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Abstract. It is estimated that 20% of genes in the human genome en-
code for integral membrane proteins (IMPs) and some estimates are
much higher. IMPs control a broad range of events essential to the
proper functioning of cells, tissues and organisms and are the most com-
mon target of clinically useful drugs [1]. However there is a dearth of
high-resolution 3D structural information on the IMPs. Therefore good
prediction methods of IMPs structures are to be highly valued. In this
paper we apply Conditional Random Fields (CRFs) to build a probabilis-
tic model to solve the membrane protein helix prediction problem. The
advantage of CRFs is that it allows seamless and principled integration
of biological domain knowledge into the model. Our results show that the
CRF model outperforms other well known helix prediction approaches
on several important measures.

1 Introduction

A number of high throughput projects have been positioned to assist in the
interpretation of the human genome sequence data. Structural determination of
integral membrane proteins can be problematic due to difficulties in obtaining
sufficient amounts of sample. Protein sequence analysis methods extended by
our knowledge of protein structure may be suited to contribute significantly to
these aspects of protein structure and function.

In this paper we cast the protein helix prediction task as a binary sequen-
tial classification problem and use Conditional Random fields (CRFs) to solve
it [2]. Given a set of membrane proteins sequences, each single record in the
set contains pair of sequences: The observation sequence, represented by x and
the label sequence, represented by y. The protein observation sequence is a se-
quence of amino acids, represented by 20 different letters. The label sequence is
a transmembrane helical/non-helical structure sequence represented by binary
labels 0/1 respectively. This data, called the training data, is represented by
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T = (x(k), y(k))
N

k=1, where N is the total number of proteins. Our goal is to pre-
dict the helical structure of a target set, which has observation sequences only.

2 The Sequential Classification Problem

The sequential classification problem is well known in many different fields such
as computational linguistics, part of speech tagging, computational biology and
many more. Given set of observation sequences, goal here is to find correspond-
ing label sequences to these observations. A very common approach is using
generative models, such as Hidden Markov Models (HMMs), finding the joint
probability distribution p(X,Y ) where X and Y are random variables describ-
ing the observation and the labelled sequences respectively. This approach suffers
from a major drawback that in order to find the joint distribution, a generative
model has to calculate all possible observation sequences, which may be not prac-
tical [3]. In contrast, the conditional models specify the probability of a label
given an observation sequence p(Y |X). Thus, no effort is spent on modelling all
possible observation sequences, but only on selecting the labels which maximize
the conditional probability [2].

3 Conditional Random Fields (CRFs)

Conditional Random Fields (CRFs) is a probabilistic framework for labelling se-
quential data. CRFs is a form of undirected graphical state model that defines a
log-linear distribution for each state over the label sequence based on the obser-
vation sequence [3]. CRFs main advantage over other non-generative finite-state
models based on directed graphical models, such as Maximum Entropy Markov
Models (MEMMs), is by avoiding a weakness called the label bias problem.
The Markovian assumptions in MEMMs and similar state-conditional models
separate the decision making at one step from future dependent decisions of
consecutive steps, and may be biased towards states with fewer outgoing transi-
tions. In contrast, CRFs have a single exponential model for the joint probability
of the entire sequence of labels given the observation sequence [2].

Formally, we define G = (V,E) to be an undirected graph when v ∈ V
corresponding to each of the random variables representing a label sequence Yv

from Y and e ∈ E corresponding to the transition between a given label to the
next one. Even though in theory the structure of graph G may be arbitrary, in
our application the graph is a simple chain, where each node corresponds to a
label [3].

3.1 Definition

Let G = (V,E) be a graph that Y = (Yv)v ∈ V . If each random variable Yv in
the graph G obeys the Markov property, then (Y,X) is a conditional random
field F in which p(Yv|X,Yw, w �= v) = p(Yv|X,Yw, w ∼ v), where w ∼ v are
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neighbors in G. A clique c in the graph G is defined as a subset of vertices which
are completely connected. In a chain graph the cliques are either from first order
(single vertex) or second order neighbors (two neighbor vertices).

From the definition of Gibbs Random Fields (GRFs), a set of random vari-
ables f is said to be a Gibbs random field if and only if its configuration obey a
Gibbs distribution of the form:

P (f) = Z−1 × e−
1
T U(f) (1)

where Z is a normalizing factor: Z =
∑

f∈F e−
1
T U(f), T is a constant called the

temperature which equals to 1 in the most simple case and U(f) is the energy
function. By the The Hammersley-clifford theorem if f obeys the Markov prop-
erty (and positivity) then the physical topology (chain) coincides with the logi-
cal topology and the energy function can be expressed as a sum of the cliques’s
neighbors order:

U(f) =
∑

{v}∈C1

V1(fv) +
∑

{v,w}∈C2

V2(fv, fw) (2)

[4]. Since conditional random fields also hold the conditions of Markov ran-
dom field, then according to Hammersley-clifford theorem, they have a Gibbs
distribution, leading us to the fundamental theorem of random fields:

pθ(y|x) ∝ exp

⎛

⎝
∑

j

λjfj(yi−1, yi, x, i) +
∑

k

µkgk(yi, x, i)

⎞

⎠ (3)

where fj(yi−1, yi, x, i) is a transition feature function of the entire observation
sequence and the labels at positions i and i − 1, gk(yi, x, i) is a state feature
function of the entire observation sequence and the label at position i. λj and
µk are estimated from the training data. We assume that the feature functions
fk and gk are given and fixed [3].

3.2 Feature Functions and Model Estimation

Each potential function actually represents a constraint on subset of random
variables on which it operates. Thus, by satisfying a constraint we actually
increase the likelihood of the global configuration. In what follows, we look
at the transition function as a general case of the state function by writing
g(yi, x, i) = g(yi−1, yi, x, i). We also define the sum of a feature over the sequence
by Fj(y, x) =

∑n
i=1 fj(yi−1, yi, x, i) where fj(yi−1, yi, x, i) refers to either transi-

tion or state function [3]. Therefore, the probability of a label sequence y given
the observation sequence x is in the form

p(y|x, λ) =
1

Z(x)
exp(

∑

j

λjFj(y, x)) (4)

where Z(x) =
∑

y exp(
∑

j λjFj(y, x)). The parameters (λj) are computed by
maximizing the log-likelihood with the training data using either iterative scaling
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or conjugate gradient methods [5, 3]. The most likely label sequence ŷ for input
sequence x is

ŷ = arg max
y

p(y|x, λ) = arg max
y

∑

j

λj · Fj(y, x)

3.3 Feature Integration with the Model

The most important aspect of specifying the model is selecting the set of features
that capture the important relationships among the observation and the label
sequences, in our case the protein sequence and the helical structure respectively
[6]. In our work we have selected a basic set of features capturing the model’s
constraints and divided them into several groups:

Start, End and Edge Features. By using these features we capture the prob-
ability of starting/ending a sequence with assigning a given label or the transition
probability for moving from one state to the consecutive state. For instance, the
start unigram feature has the form:

ustart(x, i) =
{

1 if the Amino Acid at position i is the first in the sequence
0 otherwise

The relationship between the observation and a potential helix membrane struc-
ture is described in the feature:

fstartH
(yi, x, i) =

{
ustart(x, i) if yi = Helix membrane
0 otherwise

Similarly, we define another set of features for the relationship with a non-helix
membrane structure.

The Edge feature in contrast, is a bigram feature which depends on two
consecutive labels:

fedgeH−H (yi−1, yi, x, i)=

{
uedge(x, i) if yi−1=Helix membrane and yi=Helix membrane
0 otherwise

Basic Amino Acid Feature. Amino acids have different tendencies to popu-
late one membrane helical structure in preference to another. Since our language
contains 20 possible amino acids, we have 20 different unigram features from this
type. The unigram feature of amino acid n in position i is:

un(x, i) =
{

1 if the Amino Acid in sequence x at position i is from type n
0 otherwise

Amino Acid Property Feature. Amino acids differ one from another in their
chemical structure expressed by their side chains, providing them different prop-
erties. The fact that amino acids from the same classification group tend to
appear in similar locations, motivated us to create special property features. We



Conditional Random Fields for Transmembrane Helix Prediction 159

have adopted the properties classification taken from Sternberg [7] classifying
the amino acids into nine groups1, each group described by a unigram feature.
Note that some amino acids may appear in more than one group simultaneously.

The hydrophobicity property for instance, is described in the feature:

uHydrophobic(x, i)=

{
1 if the Amino Acid in x at position i∈ (M,I,L,V,A,G,F,W,Y,H,K,C)
0 otherwise

4 Experiments, Results and Analysis

We now report on our experiments to test the effectiveness of features proposed
in Section 3.3, embedded in a CRF model, to predict the location of membrane
helical regions in protein sequences.

4.1 Data Set

The data set consists of a set of 148 transmembrane protein sequences with
experimentally confirmed transmembrane regions, which are significantly non-
similar, based on pairwise similarity clustering compiled by Möller et al [8].
The data set can be accessed via ftp://ftp.ebi.ac.uk/databases/testsets/trans
membrane. We randomly picked 24 sequences out of the 148 and grouped them
as a test set, using the remaining 124 sequences as the training set. We repeated
this procedure ten times, having a cross validation test of ten independent ex-
periments and calculated the average values of these measurements.

4.2 Results and Analysis

In our experiment we have evaluated the prediction accuracy of the test set with
the experimentally confirmed results based on two two main approaches: per-
residue accuracy and per-segment accuracy as described in Chen, Kernytsky and
Rost (henceforth referred as CKR) [9]. In per-residue accuracy the predicted
label and actual label are compared by residue. In per-segment accuracy we
determine how accurately a method correctly predicts the location of a trans-
membrane helix (referred as TMH) region. We have used two popular methods
to score per-segment accuracy. The first method requires a minimal overlap of 3
residues between the two corresponding segments and does not allow the same
helix to be counted twice, as used in the paper of Chen et al. [9]. This method
we refer as 3R. The second method requires minimal overlap of 9 residues but
does allow counting the same helix twice, indicated by 9R. For our comparison
we will closely follow the CKR paper as it has collated results of several methods
for transmembrane helix prediction on a common benchmark data set displayed
in the following table:

1 Aromatic (F,W,Y,H), Hydrophobic (M,I,L,V,A,G,F,W,Y,H,K,C), Positive (H,K,R),
Polar (W,Y,C,H,K,R,E,D,S,Q,N,T), Charged (H,K,R,E,D), Negative (E,D),
Aliphatic (I,L,V), Small (V,A,G,C,P,S,D,T,N), Tiny (A,G,S).
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Per-Residue Accuracy Per-Segment Accuracy
Q2 Q%obs

2T Q%prd
2T Q%obs

2N Q%prd
2N

83 67 74 92 88
Q

(3R)
ok Q

%obs(3R)
tmh Q

(9R)
ok Q

%obs(9R)
tmh Q%prd

tmh

28 43 44 72 99

In order to compare our results with other available methods, we consider
the work of Chen et al. [9] and methods contained within as a reference. In the
”Per-Residue Accuracy” results we have achieved high prediction accuracy for
both transmembrane and non-transmembrane residues, lower accuracy of trans-
membrane residues only, and higher accuracy of non-transmembrane residues. In
the ”Per-Segment Accuracy” results we can see a considerable difference between
the 3R test and the 9R test. The figures in Q%prd

tmh indicate high precision of true
prediction among those helices who were detected by the model. When com-
paring our prediction results with the other methods, our model performed well
with high percentage of accuracy on the per-residue test. The CRFs model
achieved the highest score among all 28 other methods in the over-
all percentage of residues predicted correctly in both transmembrane
and non-transmembrane helices (Q2) with 83% of true prediction. On
the per-segment test, our model achieved high precision but low prediction score
compared to the other models. Notice that some methods may have involved use
of proteins from the data set as training so their results may be overestimates.

5 Conclusions

In this paper we introduced the Conditional Random Fields (CRFs) technique
which has found good application in the solution of sequential mining problems.
We used CRFs to segment and label sequence data to solve the membrane pro-
tein helix prediction problem. Our results look promising compared to currently
available methods, and as such will motivate the future use of CRFs to solve se-
quential labelling data problems. For more information on this paper please check
our website on http://www.it.usyd.edu.au/∼chawla/publications/crf1.pdf.
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