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Abstract

We present an association rule mining method for mining high confidence rules, which describe
interesting gene relationships from microarray datasets. Microarray datasets typically contain an order
of magnitude more genes than experiments, rendering many data mining methods impractical as they are
optimised for sparse datasets. A new family of row-enumeration rule mining algorithms have emerged to
facilitate mining in dense datasets. These algorithms rely on pruning infrequent relationships to reduce
the search space by using the support measure. This major shortcoming results in the pruning of many
potentially interesting rules with low support but high confidence. We propose a new row-enumeration
rule mining method, MAXCONF, to mine high confidence rules from microarray data. MAXCONF is a
support-free algorithm which directly uses the confidence measure to effectively prune the search space.
Experiments on three microarray datasets show that MAXCONF outperforms support-based rule mining
with respect to scalability and rule extraction. Furthermore, detailed biological analyses demonstrate the
effectiveness of our approach – the rules discovered by MAXCONF are substantially more interesting
and meaningful compared with support-based methods.

Index Terms

Data mining, association rules, high confidence rule mining, microarray analysis.

I. INTRODUCTION

THE increasing volume of biological data collected in recent years has prompted consider-

able interest in developing efficient bioinformatics tools for genomic and proteomic data

analysis. One main objective of molecular biology is to develop a deeper understanding of how

genes are functionally related, and more specifically, to explain how cells control and regulate

the expression of their genes and other cellular functions. Deciphering gene relationships has

the potential to assist biomedical research in identifying the underlying cause of disease and

developing specific gene-targeting treatments.

Microarrays have revolutionised the way in which biological research is carried out. They allow

biologists to analyse the behaviour of an organism’s genome globally by measuring the expression

levels of thousands of genes within a cell in a single experiment. Despite these global genome

studies, research in gene relationships is hindered by the large volumes of data produced by

microarray experiments. Microarray data presents new challenges which render many traditional

data mining techniques infeasible to extract and explore the hidden gene relationships. The main

challenge is its high density – a large number of attributes (columns) and a considerably smaller

number of expression experiments (rows).

To use current data mining algorithms, biologists are forced to simplify the complexity of their

data by restricting the analysis to a small proportion of attributes. For example, Boolean Networks
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[1], [2] and support-based Association Rule (AR) mining [3], [4] often restrict the search space

to as few as 5% of the entire genes studied. As a result, many potentially interesting gene

relationships (low support and high confidence) are not retrieved.

AR mining is a foundational technique which allows for the simultaneous discovery of relation-

ships between attributes. AR algorithms can extract associations among genes from microarray

datasets, where the expression of one gene is related to the expression of others. For example:

GENE1 ⇒ GENE2 (support 10%, confidence 90%)

states that when GENE1 is expressed, 90% of the time GENE2 is also expressed, and that GENE1

and GENE2 are expressed together in 10% of the microarray experiments.

In comparison to Boolean Networks, where a small group of genes are selected prior to data

analysis [5], traditional AR mining algorithms can include all genes, allowing for the global

analysis of microarrays. The number of genes is then iteratively reduced by pruning sets of

genes which are considered uncommon/infrequent. As a result, AR algorithms search for common

gene relationships within experiments. These AR algorithms however were developed for sparse

datasets, where there are few columns and many more rows, and thus are not appropriate for

microarray data. They work by enumerating the relationships among columns (genes) and thus

must consider an enormous number of gene associations. This often results in itemset explosion,

where the number of associations that must be considered exceeds the available memory space.

Recently, support-based row-enumeration AR mining algorithms have been introduced to prevent

itemset explosion, allowing the mining of dense datasets [4], [6].

In this paper, we will show that mining common relationships between attributes using support-

based pruning is not suitable for all types of microarray experiments. Motivated by this concern

we developed a new row-enumeration algorithm, MAXCONF1 , which successfully mines ARs

without support pruning. We incorporate new confidence pruning methods allowing us to reduce

the row-enumeration space, and in turn mine not only common relationships but rare interesting

relationships as well.

We compare MAXCONF to the recently introduced support-based row-enumeration algorithm

RERII [4]. Our evaluation on three microarray datasets demonstrates how MAXCONF outper-

1The MAXCONF implementation and source code are available by request from the authors.
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forms RERII with respect to efficiency and the number of rules identified. To investigate the

biological relevance of the gene relationships MAXCONF identifies, we evaluated them using the

BIND database [7] and the Gene Ontology [8]. Our experimental results indicate that MAXCONF

is much more effective in discovering gene relationships from microarrays than support-based

approaches.

This paper is organised as follows: In Section II we introduce microarrays and their character-

istics which make analysis difficult. In Section III we present the relevant work in the literature,

which motivated the development of our MAXCONF algorithm described in Section IV. The

experimental results of our evaluation are outlined in Section V. In Section VI we conclude this

paper with a summary.

II. MICROARRAYS

The DNA microarray allows parallel genome-wide gene expression measurements of thousands

of genes at a given time, under a given set of conditions, for a cell/tissue of interest. The presence

of a gene’s mRNA transcript in a cell indicates that the gene is expressed, and there is a strong

correlation between the degree of a gene’s expression and the amount of mRNA. Furthermore,

the expression level of a single gene is highly dependent on the presence and/or absence of

various proteins and thus the expression levels of the genes encoding those proteins.

Generation of microarray data introduces a variety of data analysis issues not encountered in

traditional molecular biology or medicine. The data from a series of microarray experiments is

commonly in the form of a NxM matrix of expression levels, where the N rows correspond

to the various experimental conditions (generally < 500 ) and the M columns correspond to

the genes studies (generally � 6000). This data form renders many traditional data mining

algorithms ineffective as these algorithms are designed to mine sparse data, where the number

of non-zero columns is a small fraction of the number of rows. This aspect will be further

detailed in Section III.

There are three main designs of microarray experiments: temporal, duplicate and perturbation.

In temporal experiments, each row corresponds to a different time point to monitor the expression

changes of the genes over time. For example, the Spellman et al. [9] dataset measures the changes

in expression of S.cerevisiae genes during the cell-cycle. Duplicate experiments are often used to

identify common characteristics within a population for classification purposes. For example, the
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prostate cancer dataset [10] contains the expression values of 12,600 genes from 52 cancerous

and 50 healthy prostate cells.

In this paper, we concentrate on analysing perturbation microarrays as they are specifically

designed to understand the relationships between genes. Perturbation experiments are based on

the rationale that if a gene or cell is no longer able to function normally, the expression levels

of other genes that are functionally related may be altered. In perturbation data, each column

corresponds to a cell which may be genetically altered to prevent the expression of a selected

gene, or stress induced [11], to infer its affect.

Perturbation microarrays exhibit data characteristics not observed in duplicate microarray

experiments. When analysing duplicate experiments, identifying common gene relationships

across the majority of experiments is appropriate and thus, clustering [12] and support-based row-

enumeration AR mining are suitable. Perturbation data on the other hand, will not only contain

common relationships but also rare relationships describing the affects of the perturbations.

Therefore, methods designed to analyse duplicate microarrays are not particularly effective for

analysing perturbation data. The main related literature on AR mining, to date, has focused

on improving support-based classification tasks and thus the mining of duplicate data [4], [6],

[13]. To our knowledge, there is no reported work in the literature on algorithms that can mine

perturbation data effectively.

III. RELATED WORK

A. Association Rule Mining

AR mining was originally designed to examine the behaviour of customers in terms of the

products (items) they purchase together in one visit (transaction) [14]. ARs from this data provide

valuable information that can be used for marketing and product placement. A formal statement

of the AR mining problem is as follows: Let the dataset D = {t1, t2, . . . , tn} be a set of n

transactions and let I = {i1, i2, . . . , im} be the set of all possible items (m). Each transaction

t consists of a set of items I from I. The aim is to mine all ARs (implications) of the form

I1 ⇒ I2, which describe strong relationships between the items based on the transactions in D.

In the previous AR, I1 is referred to as the antecedent itemset and I2 as the consequent itemset.

The strength of an AR is predominately measured by support and confidence, and the goal is

to identify rules that have a support and confidence greater than the user-specified thresholds
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TABLE I

EXAMPLE TRANSACTION DATASET AND RULES (MINSUP ≥ 3 AND MINCONF ≥ 4/5)

(a) Transaction set

Transaction Items

1 A B C D E G

2 A C D E G

3 C D E F G H I

4 B C D E G

5 A C E G I

6 A D I

7 D I J

8 A B C D G

(b) Rules found by MAXCONF and RERII

MAXCONF Rule Confidence Support RERII Found

C ⇒ DEG 4/6 4 Yes

E ⇒ CDG 4/5 4 Yes

G ⇒ CDE 4/4 4 Yes

A ⇒ CG 4/5 4 Yes

C ⇒ AG 4/6 4 Yes

G ⇒ AC 4/6 4 Yes

A ⇒ D 4/5 4 Yes

B ⇒ CDEG 2/3 2 No

B ⇒ CDG 3/3 3 No

I ⇒ D 3/4 3 No

J ⇒ DI 1/1 1 No

F ⇒ CDEGHI 1/1 1 No

H ⇒ CDEFGI 1/1 1 No

minimum support (minsup) and minimum confidence (minconf ), respectively. For brevity, we

refer to an itemset with k different items as a k-itemset.

Definition 1 (Support): Let I ⊆ I be a set of items from D. The support of an itemset I in

D, denoted by σ(I), is the proportion of transactions that contain I:

σ(I) =
# of transactions containing I

# of transactions
(1)

The support of an AR, I1 ⇒ I2, is: σ(I1 ∪ I2). If σ(I) ≥ minsup then I is a frequent itemset.

Definition 2 (Confidence): The confidence of an AR, I1 ⇒ I2, denoted by conf(I1 ⇒ I2),

refers to the strength of the association and is given by:

σ(I1 ∪ I2)

σ(I1)
(2)

For example, the support and confidence of the rule A ⇒ CD in Table I(a) are 3 and 3/5

respectively.

The first stage of standard AR mining algorithms, like Apriori [14], is to identify all frequent

itemsets. Following this, the confidence of all rules that can be formed from the frequent

itemsets is calculated, and the confident rules are retained. This final phase is not computationally

expensive, hence the majority of research has been devoted to the first. The main concern during
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the first phase is that the search space for frequent itemsets is exponential with respect to the

number of different single items within a dataset. We refer to any itemset which is generated

and whose support is counted during this process as a candidate itemset. To naı̈vely identify all

frequent itemsets, all possible candidate itemsets must be tested. This is not necessary however.

The support monotonicity property states that if an itemset is infrequent, then all of its supersets

will also be infrequent [14]. Based on this, if an infrequent itemset is found, we can reduce the

search space of candidates by not considering any of its supersets.

Definition 3 (Support Monotonicity [14]): Given a transaction dataset with items I, let I1 and

I2 be two itemsets such that I1, I2 ⊆ I, then:

I1 ⊆ I2 =⇒ σ(I1) ≥ σ(I2) (3)

The Apriori algorithm [14] employs this property, systematically generating and counting

the support of all candidate itemsets in a bottom-up procedure. That is, Apriori begins with

all frequent itemsets of size 1 (1-itemsets), and systematically extends these to 2-itemsets by

merging them with other frequent 1-itemsets. For example, if minsup = 3, the frequent 1-itemsets

in the transactions in Table I(a) are A, C, D and E. Each of these frequent 1-itemsets is then

combined with another to form candidate 2-itemsets. These include AC, AD, AE, CD, CE

and DE. The 2-itemsets that are infrequent are pruned: in this case, AE, and the remaining are

iteratively extended to form larger itemsets until no new candidate itemsets can be formed. This

process is referred to as item-enumeration.

The Apriori algorithm is generally effective for mining sparse datasets. As data density

increases, minsup will need to be increased, and less interesting rules will be mined. This is

because Apriori works well on the assumption that the number of frequent itemsets is low, and

thus the number of candidate itemsets will also be low. Microarray data is considered dense

however, where there are many more items than transactions and there are many large candidate

and frequent itemsets. As a result, Apriori suffers from itemset explosion, which occurs when

the space required to store the candidate itemsets exceeds the space available. For example,

to identify a frequent 5-itemset at least 30 smaller candidate itemsets (including 1, 2, 3 and

4-itemsets) will need to be generated.

When applying AR mining to microarray data, each microarray experiment is considered to

be a single transaction. In our experiments, genes which are considered to have an up-regulated
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or down-regulated expression level in at least one transaction form the items. This is detailed in

Section V.

B. Row-Enumeration

Recently support-based row-enumeration methods have emerged to facilitate the mining of

microarray data. These include FARMER [15], TOPKRGS [13], CARPENTER [6] and RERII [4].

These algorithms effectively prevent itemset explosion by only expanding closed itemsets and

enumerating the rows (transactions) rather than items.

Definition 4 (Closed Itemset): The candidate itemset I1 is a closed itemset if there does not

exist an itemset I2 such that:

I1 ⊂ I2 and σ(I1) = σ(I2) (4)

FARMER and TOPKRGS were specifically designed to generate classification ARs of the form

X ⇒ C, where C is a class label [13], [15]. These two algorithms require duplicate microarray

data, where each microarray experiment is classified into one of two classes prior to mining.

The algorithms CARPENTER and it’s extension RERII are designed to mine frequent closed

itemsets (FCI) from microarray data which may not be classified, that is these algorithms simply

do not consider any classes [4], [6]. Our MAXCONF algorithm is closely related to RERII in that

they are both row-enumeration algorithms, specifically designed to mine unclassified microarray

data. Therefore for the remainder of this section we will concentrate on introducing RERII, to

provide a strong foundation and motivation for our algorithm.

RERII extracts all FCI by searching the row-enumeration space depth-first. It begins by re-

moving all infrequent 1-itemsets from the transactions. These transactions are then considered

as individual itemsets, each assigned a support of 1. These itemsets are then intersected with one

another, iteratively generating sub-itemsets of greater support. This continues recursively until

no smaller itemsets can be formed [4].

The search space (without support pruning) for the transactions in Table I(a) is represented as

a row-enumeration tree in Fig. 1(a). Here, each node n corresponds to an itemset whose child

nodes, c(n), correspond to sub-itemsets with greater support. We use the phrase sibling nodes

of n, denoted by s(n), to refer to the nodes to its right with the same parent.

Child nodes are generated by taking the intersection of the parent itemset with one or more

of its sibling nodes. For example, in Fig. 1(a), the node {12} (indicated by the edge label)
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Transactions

ABCDEG

1

ACDEG

2

CDEFGHI

3

BCDEG

4

ACEGI

5

ADI

6

DIJ

7

ABCDG

8

ACDEG

12

CDEG

13

BCDEG

14

ACEG

15

AD

16

ABCDG

18

CEGI

35

DI

36

DI

37

AI

56

CDEG

123

CDEG

124

ACEG

125

AD

126

ACDG

128

BCDG

148

CEG

1235

CDG

1236

ACG

1258

CG

12356

(a) Complete row-enumeration tree

Transactions

ABCDEG

1

CDEFGHI

3

ACEGI

5

ADI

6

DIJ

7

ACDEG

12

BCDEG

14

ABCDG

18

CEGI

35

DI

367

AI

56

CDEG

1234

ACEG

125

AD

126

ACDG

128

BCDG

148

CEG

12345

CDG

12348

ACG

1258

CG

123458

(b) Pruned row-enumeration tree (c) Key

Fig. 1. MAXCONF row-enumeration tree before and after pruning

corresponds to the intersection between nodes {1} and {2}, and its support is simply the number

of transactions that were intersected during formation, in this case it is 2. There are two situations

when a resulting intersection does not form a child node:

1) If the intersection is a 1-itemset, the child node is not formed as this simply cannot form

an association rule. This occurs between nodes {1} and {7}.

2) If the current parent node, n, is completely contained within a sibling node, a child node

is not constructed and the support of n and all c(n) are incremented by one.

After all child nodes of a node are generated, the algorithm continues recursively depth-first

by forming the next set of child nodes.
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Itemset support pruning is included to reduce any unnecessary node expansion. With respect

to the support monotonicity property, row-enumeration algorithms can only apply this pruning

during initialisation, where the infrequent 1-itemsets are removed from the initial transaction

nodes. The main support pruning that RERII employs is based on predicting the maximum

support a node n may exhibit.

Definition 5 (Maximum Support [4]): Given a node n with k sibling nodes, the maximum

support of the itemset at n, represented as σmax(n), or any of n’s potential child nodes is:

σmax(n) = n.initial support + k (5)

The maximum support increase of n is the cardinality of s(n) [4]. More specifically, a node’s

support is only increased if it is completely contained within at least one of its sibling nodes.

Furthermore, the maximum support increase of all c(n) is also the cardinality of s(n) [4].

For example, the node {16} with initial support of 2, will only be intersected with one node

(|s({16})| = 1). Thus, the support of {16} and all c({16}) will be at most 3. If a node’s

maximum support is less than minsup, the node can be pruned.

Cong et al. [4] applied RERII to microarray data, however their analysis only involved

performance studies with respect to time and space requirements compared with state-of-the-art

Apriori style methods: CHARM [16] and CLOSET [17]. As minsup was decreased, CHARM failed

due to using all available memory and CLOSET was found to be too slow. RERII on the other

hand, performed superiorly to both [4], without memory issues, indicating the appropriateness

of applying row-enumeration over item-enumeration methods.

Unlike Boolean networks and item-enumeration AR algorithms, row-enumeration algorithms

can identify more gene relationships by including many more genes in the mining process.

However, there is a fundamental issue related to the limitation of support-based pruning that

these algorithms do not address – many rules that a biologist would consider of high interest

are pruned (based on support) leaving them undiscovered. This is particularly the case with

perturbation microarrays.

C. Maximum Participation Index

The support-based techniques deem infrequent itemsets uninteresting, resulting in them being

pruned during frequent itemset generation. Therefore, in the final phase of rule mining only a

subset of the confident rules may be identified.
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The Maximal Participation Index (MAXPI) was introduced in [18] to mine collocation patterns

from spatial datasets. It excludes the support threshold from the search, allowing all confident

rules to be identified. The MAXPI of an itemset I is the maximum confidence of all generated

rules from I . Therefore, if the MAXPI of an itemset is below the confidence threshold it cannot

generate any confident rules. Unlike support, MAXPI is not monotonic with respect to itemset

containment relations: given two itemsets, I1 and I2 such that I1 ⊂ I2, we are not guaranteed that

MAXPI(I1) ≥ MAXPI(I2). MAXPI does however exhibit a weak monotonic property, which states

that if a k-itemset is MAXPI frequent, then at most one of its (k−1)-subsets is not confident. By

incorporating this weak monotonic property, an Apriori style algorithm to mine confident rules

without a support threshold is possible.

Definition 6 (Maximal Participation Index): Given an itemset I , the maximal participation

index of I is defined as the maximal participation ratio (pr) of all items i ∈ I:

MAXPI(I) = max i∈I{ pr(I, i) } where (6)

pr(I, i) = conf(i ⇒ (I/i)) (7)

One drawback of using MAXPI is that no 1-itemsets can be pruned in the first phase as

they all have a confidence of 100%. Therefore, Apriori-MAXPI algorithms must deal with all

the candidate 1-itemsets and the |I|2 2-itemsets before any pruning can take place. Another

downfall of MAXPI is that itemset pruning is not as stringent as that of support, and thus

works against Apriori, which is efficient on the assumption that the number of frequent itemsets

is low. Furthermore, with a large number of items, like in microarray data, Apriori-MAXPI

approaches significantly suffer from itemset explosion. Unfortunately, there is no property of

MAXPI that can be exploited by a row-enumeration approach. Motivated by the possibility of

mining high confidence rules without support pruning from microarray data, we investigated and

identified confidence pruning techniques that can be exploited by our row-enumeration algorithm,

MAXCONF, which is described in the following section.

IV. HIGH CONFIDENCE RULE MINING

In this section, we introduce our row-enumeration approach to mining high confidence rules

efficiently. MAXCONF (Algorithm 1) addresses the two main shortcomings of association rule

mining: support pruning and itemset explosion. The main challenge is that no support pruning can
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take place to reduce the search space. A naı̈ve approach would be to grow the entire enumeration

tree, with no support pruning, until no more itemsets can be formed. This would be equivalent

to generating all closed itemsets including those that cannot produce confident rules, and thus

for large and dense datasets it will require unnecessary expensive computations and memory.

We applied this naı̈ve approach on the Hughes et al. [19] perturbation microarray dataset, and

an error was reported after using up all available memory (4GB RAM) when only 30% of the

transactions had been processed.

MAXCONF exploits two confidence pruning methods: Level 1 and Level 2, allowing us to

effectively prune the search space. Level 1 pruning will remove nodes which cannot generate

confident I-spanning rules. Level 2 pruning removes nodes which can only generate confident

I-spanning rules that can be derived from their parent node. MAXCONF is further enhanced

to mine all maximal confident rules. These methods are detailed in the following sections and

we continue with our running example dataset in Table I(a) for detailed explanations. The rules

generated by MAXCONF on this example dataset are shown in Table I(b). Rules which are not

identified using RERII when minsup = 3 are indicated in the last column. As can be seen in

Table I(b), if support pruning takes place on this small dataset almost 50% of the rules are not

identified.

A. Level 1 Confidence Pruning

This pruning is based on an observation of the row-enumeration tree’s structure. For each

node in the tree, we can predict the maximum support [4] and confidence its corresponding

itemset can exhibit based on its location within the tree. From this, our first confidence pruning

technique is possible. It is based on the following definitions and is performed at Step 2 of

Algorithm 1.

As in RERII, in MAXCONF a node’s support will only increase if it is completely contained

within one of its sibling nodes [4] (see Def. 5).

Definition 7 (Minimum Feature): The item i1 in the itemset I is the minimum feature if:

σ(i1) ≤ σ(i2) | ∀i2 ∈ I (8)

November 13, 2006 DRAFT



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 13

Algorithm 1: MAXCONF - High Confidence Rule Mining
Input: Transaction database D, minimum confidence minconf

Output: High confidence spanning rules satisfying minconf

Initialisation:

Let N = set of parent nodes corresponding to each transaction in D. Let n.items = itemset

represented by node n with support σ(n). For each transaction node, σ(n) = 1 initially. Let

R:= ∅ be the set of maximal confident rules.

Procedure: MAXCONF depthfirst(N )

foreach node ni ∈ N do

if ni has been discovered then delete ni and return;1

Level 1 Confidence Pruning;2

if ni cannot form a confident spanning rule then delete ni and continue;

Expand subtree;3

Calculate σ(ni) and form children of ni;

Maximal Rule Generation;4

M:= getMaxFeatures(ni);

foreach m ∈ M do
if m 6∈ ni.parentMaxFeatures then add rule m ⇒ {ni.items − m} into R

Level 2 Confidence Pruning;5

foreach child c ∈ ni.children do
if c.items ⊂ M then delete c

if ni.childen 6= ∅ then MAXCONF depthfirst(ni.children)6

Procedure: getMaxFeatures(n)

maxFeatures := ∅;7

foreach item i ∈ n.items do
if σ(n)/σ(i) ≥ minconf then maxFeatures.insert(i)

return maxFeatures

Definition 8 (I-Spanning Rule): Given an itemset I , a rule r is an I-spanning rule if:

antecedent(r) ∪ consequent(r) = I and (9)

|antecedent(r)| = 1 (10)
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Definition 9 (Maximum Confidence): Given a node n with minimum feature i, the maximum

confidence of any spanning rule of the itemset at n is:

confmax(n) =
σmax(n)

σ(i)
(11)

If confmax(n) < minconf , then n can be pruned as any further enumeration below the node

will only generate less than or equally confident child rules. This is because the maximum

support of any child node is bounded above by σmax(n), and the support of its minimum feature

can only be greater than or equal to the minimum feature of n. Thus, the child node is bounded

above by confmax(n).

Example 1: Consider node {5} (ACEGI) in Fig. 1(a). This node represents a transaction

node, hence its initial support is 1. As MAXCONF is a depth first algorithm, when we reach

node {5}, node {8} has already being pruned as it was contained within node {1} (see Fig. 1(b)).

Similarly nodes {2} and {4} are previously pruned. Therefore, when we consider node {5}, it

has 2 sibling nodes. Thus from Def. 5, σmax(ACEGI) = 1 + 2 = 3. The minimum feature set

of ACEGI is I (σ(I) = 4) and the confmax(ACEGI) is thus 3/4. Assuming minconf = 4/5,

node {5} can be pruned, as it and any of its potential child nodes will not produce confident

spanning rules (node {56} has a confmax of 2/5).

If the current parent node is not pruned by Level 1, it is expanded to form a subtree of child

nodes following the approach of RERII [4]. This is performed at Step 3 of Algorithm 1, and in

doing so the actual support of the current parent node is determined.

In comparison to FARMER [15] and TOPKRGS [13], our approach generates more complex

rules with no restriction on the consequent item. In these algorithms the consequent is fixed

as a class. We effectively restrict our search to mining I-Spanning Rules. It is possible that we

may loose confident relationships such as AB ⇒ CD, if we find that ABCD cannot form any

confident I-Spanning Rules and is pruned. This is because the rules A ⇒ BCD and B ⇒ ACD

do not need to be confident for the rule AB ⇒ CD to be. This restriction is necessary for any

effective pruning based on confidence. To obtain the support of AB we need to expand the entire

row-enumeration tree, which is infeasible. Although some complex rules may be lost, we can

still find most complex rules while only testing for I-Spanning Rules. Our reasoning for this is

based on the following lemma.

Lemma 1: Given an itemset I and its set of confident spanning rules CR, let the set A contain
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the single antecedents of the rules in CR. The rules in CR can be easily combined into one

confident rule of the form A ⇒ I − A.

Proof 1: Let X ⇒ I−X be a confident spanning rule, then X ∈ A. Therefore σ(X) ≥ σ(A).

Thus, conf(A ⇒ I − A) ≥ conf(X ⇒ I − X) ≥ minconf .

B. Level 2 Confidence Pruning

After the support of a current node is determined, maximal confident rules can be identified

(Step 4) which is detailed in Section IV-C. Further pruning based on confidence is possible after

rule generation. We identified the weak downward closure property of confidence, which can be

exploited during the generation of the row-enumeration tree, to effectively prune nodes which

will provide redundant information. This pruning is performed in Step 5 and is based on the

following definitions and Lemma 2.

Definition 10 (Maximum features): Given an itemset I , let RI be the set of all confident I-

spanning rules. The set of maximum features, MI , is the set of all antecedents of the spanning

rules.

Lemma 2 (Confidence weak downward closed): Let MI and RI be the set of maximum fea-

tures and I-spanning rules derived from I respectively. Let k be a subset of MI , then the

confidence of any k-spanning rule is bounded below by the confidence of all rules in RI .

Proof 2: Let x ⇒ y be a k-spanning rule, then conf (x ⇒ y) = σ(x∪y)/σ(x) ≥ σ(I)/σ(x) ≥

minconf . The last inequality follows from the fact that x ∈ MI .

Definition 11 (Sub-rules): Given an itemset I , let RI be the set of all rules {x ⇒ y} where

x ∪ y = I . The set of sub-rules, SRI , is the set of all rules generated from the itemset I2 such

that: (1) I2 ⊂ I and (2) for each sr ∈ SRI : (a) antecedent(sr) ∈ antecedent(RI) and (b) conf (sr)

≥ conf (RI). For example, the rule A ⇒ B (90% conf.) is a sub-rule of A ⇒ BCD (80% conf.).

By extension of Lemma 2, if the maximum feature set M of an itemset at node n is not empty,

we can prune all child nodes of n whose itemsets are subsets of M , as we are guaranteed that

such child nodes will only produce sub-rules of the confident rules generated by n (Step 5).

After Level 2 pruning MAXCONF continues recursively (Step 6).

Example 2: Consider node {1234} (CDEG) in Fig. 1(b). After calculating its support (gen-

erating its two child nodes in the process) we find the confident spanning rules C ⇒ DEG,

E ⇒ CDG and G ⇒ CDE, with confidence 4/6, 4/5 and 4/4 respectively. Thus, the maximum
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features of CDEG is CEG. Immediately, the child node {12345} (CEG) can be pruned

as it is a subset of its parent’s maximum features. We can safely prune this node, without

calculating its support or forming any child nodes, as these will only form the confident sub-

rules C ⇒ EG, E ⇒ CG and G ⇒ CE. From Fig. 1(b) we can see that this effectively prevents

the node {123456} (CG) from being generated, which will also only form confident sub-rules.

C. Maximal Confident Rule Generation

We now present another property of confident rules which can be exploited to reduce the

number of rules generated, without any information loss. If the set of confident rules can

be restricted to that of Maximal Confident Rules (Definition 12), the number of rules can be

significantly reduced. This approach can only be performed in a row-enumeration algorithm as

it exploits the way in which child nodes are constructed and occurs at Step 4.

Definition 12 (Maximal Confident Rules): Let R be the set of confident rules from a dataset

D. The set MR of maximal confident rules is the set of rules from R, where for each rule

r1 there does not exist another rule, r2, such that: (1) antecedent(r1) = antecedent(r2) and (2)

consequent(r1) ⊂ consequent(r2). For example, if the rules A ⇒ BCD and A ⇒ BC are

confident, then A ⇒ BCD is a maximal confident rule.

Assume that during MAXCONF we reach a node n whose parent node p had a maximum

feature set pM of cardinality > 1. We can restrict the rules generated by n to those which are

not sub-rules of rules identified by p. Firstly, we identify the maximum feature set of n, nM .

Then, for each item i ∈ nM , which is not in pM , we generate a confident spanning rule, as any

other confident rule from n would be a sub-rule of one identified from p, and thus be redundant.

This simple test successfully restricts our search to mining maximal confident rules.

Example 3: Again, consider node {1234} (CDEG) in Fig. 1(b), with the maximum feature

set CEG. The child node {12348} (CDG) cannot be pruned with Level 2 confidence pruning,

however we only need to consider rules with antecedent D. From node {1234}, we know C

and G produce confident rules, and thus the rules C ⇒ DG and G ⇒ CD do not provide any

information which is not contained within the maximal rules identified at node CDEG.
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TABLE II

MICROARRAY DATASETS USED IN EXPERIMENTS

Dataset # Genes # Items #Trans. Mean trans. size Min. trans. size Max. trans. size

Hughes et al. (2000) [19] 6316 10044 300 198 2 2339

Mnaimneh et al. (2004) [20] 6316 8330 215 228 7 1111

Spellman et al. (1999) [9] 6178 6179 82 1397 205 2613

V. EXPERIMENTAL RESULTS AND EVALUATION

We evaluated and compared MAXCONF against RERII [4] on three microarray datasets of

S.cerevisiae described in Table II. The first two datasets correspond to perturbation microarrays

and the last is a temporal dataset. In our experiments we have not taken into account the sequential

nature of this final dataset, treating each time measurement as an individual experiment. For each

microarray dataset, each gene is converted into one of three items: down-regulated, up-regulated,

or normal expression, depending on its level of expression in the experiments as in [3]. This is

performed by binning the log
2

of the expression level into the three classes with bounds ≤-0.2,

≥0.2, or in-between respectively. The final transactions are formed from the items corresponding

to the up and down-regulated gene items. All experiments were performed on a PC with a 3.2Ghz

Pentium 4 Xeon, 1MB L3 cache, and 4GB RAM.

A. Rule Generation

The main downfall of RERII is its inability to extract all association rules that satisfy minconf

due to support pruning. Indeed, using the Hughes et al. [19] dataset with minsup = 5%, 90.6% of

the 1-itemsets are pruned in the first stage before row-enumeration begins. This leaves only 502

different items which may be included in the frequent itemsets and confident rules. Without any

support cut-off necessary MAXCONF mines rules considering all 10044 items, and as such is

capable of detecting many more rules with high confidence, as shown in Fig. 2(b). Fig. 3(b) and

4(b) also highlight the drastic effects of support pruning on rule generation. When the support of

RERII is lowered to zero, in an attempt to find all confident rules, no rules were ever generated

as the program required too much memory. RERII also failed when the support was decreased

to 10% on the Spellman et al. [9] dataset (Fig. 4(b)).
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Fig. 2. Performance, on the Hughes et al. [19] dataset, of RERII with various supports, and MAXCONF as confidence is

increased. RERII with minsup = 0% failed to complete due to an out-of-memory error. The key in (b) is also for use in (a).
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Fig. 3. Performance, on the Mnaimneh et al. [20] dataset, of RERII with various supports, and MAXCONF as confidence is

increased. RERII with minsup = 0% failed to complete due to an out-of-memory error. The key in (b) is also for use in (a).
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increased.The key in (b) is also for use in (a).
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B. Scalability

In this set of experiments, we studied the effect of varying minconf (and minsup with RERII)

on the execution time. The results of these are shown in Fig. 2(a), 3(a) and 4(a). Intuitively,

with respect to support pruning, a higher minsup results in more pruning and thus the run time

is decreased. The performance of RERII is not affected by minconf . This is because confidence

is only taken into account after all frequent itemsets are formed. The scalability of MAXCONF

on the other hand, improves as minconf is increased. In addition, MAXCONF is significantly

more efficient than RERII on both the perturbation datasets (Fig. 2(a) and 3(a)). RERII only

outperforms MAXCONF on the Spellman et al. [9] dataset when minsup is increased to 40%

(Fig. 4(a)). However, as shown in Fig. 4(b), this has little advantage on rule generation with

significantly less rules identified. This performance of MAXCONF is based on the fact that

an itemset satisfying minsup is not guaranteed to produce any confident rules. Therefore, the

confidence pruning of MAXCONF can be considered more stringent than support pruning with

respect to mining microarray data.

C. Biological Rule Analysis

In this section, we report on how the biological significance of the rules mined by MAXCONF

and RERII were evaluated. This is not a straightforward task. Since our approach is not a

classification task, where testing/evaluation datasets are available, we can only evaluate our rules

based on documented gene relationships. Many generated rules should correspond to known

biological relationships between genes, however a non-corresponding rule does not imply an

incorrect relationship. This is because the mined relationships may not have been hypothesised

yet. In fact, biologists often perform microarray experiments to formulate new hypotheses from

unknown and/or unexpected gene relationships.

Our evaluation proceeds as follows. Firstly we concentrate on how effective MAXCONF

and RERII are in detecting known direct biological interactions in BIND [7]. As not all gene

relationships are direct interactions we then evaluate our rules with the Gene Ontology (GO)

[8]. We show that many of our rules also contain GO gene relationships. Finally, as an example

we address the iron uptake pathway, presenting some sample rules identified by MAXCONF

that correctly describe gene relationships in this system. From our analysis we confirm the
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appropriateness of MAXCONF to mine various types of gene relationships. For brevity, we only

discuss our results regarding the Hughes et al. [19] dataset.

1) Direct Interactions: The Biomolecular Interaction Network Database (BIND) [7] is an

online archive of pairwise information about direct interactions (DI) which can occur between

two biological entities. We have used BIND to analyse the biological relevance of the rules we

identify, based on precision and recall for direct interactions.

Using BIND we determined the percentage of rules mined with MAXCONF that exhibit DI

between at least two of their items i.e. precision. This is based on the rationale that for a direct

interaction to occur between two or more genes/proteins, it is highly probable their expressions

are correlated and thus they are likely to be present together in at least one rule. Furthermore,

we analysed the effectiveness of our approach to identify all possible DIs from the dataset, i.e.

recall. For example, we say that the rule X ⇒ Y Z describes a DI if their is a known DI in BIND

between X and Y or X and Z.

To calculate the precision and recall of DIs we first need to determine which DIs are actually

possible within the microarray dataset we analysed. This is done by forming all pairs of up-

regulated genes in each experiment. If a DI is known to occur between the genes and or their

protein products, we store the gene pair as a desired relationship to identify.

Definition 13 (Precision): Let R be the set of mined association rules and B be the set of

pairwise DIs in the microarray dataset, in the form of rules. The precision of DIs in R is:

Precision =
# rules in R ∩ B

# rules in R
(12)

Definition 14 (Recall): The recall of DIs in R is:

Recall =
# rules in R ∩ B

# rules in B
(13)

The recall of a system is the percentage of possible DIs which are contained within at least

one rule. For a more detailed analysis, we include two recall measures: Recall 1 and Recall 2.

Recall 1 only includes identified DIs where the antecedent of the rule binds at least one of the

consequents. Recall 2 also includes DIs between genes that are consequents of rules, however

these rules must also satisfy Recall 1.

The results of our BIND analysis are summarised in Table III. MAXCONF is clearly more

effective than the support-based methods. The significant improvement from Recall 1 and Recall
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TABLE III

BIOLOGICAL RULE ANALYSIS FOR RERII AND MAXCONF ON THE Hughes et al. [19] DATASET

Bind Analysis Gene Ontology
Algorithm Supp. (%) Conf. (%) # Rules

Precision (%) Recall 1 (%) Recall 2 (%) # Rules % Rules

RERII 0 80 – – – – – –

1.0 80 15669 0.3 0.9 1.5 11548 73.7

2.5 80 12231 0.1 0.3 1.2 9136 74.7

5.0 80 8083 0.5 0.1 0.4 6102 75.5

7.5 80 5223 0.7 0.1 0.1 4251 81.4

10.0 80 2123 1.9 0.1 0.1 1619 76.3

MAXCONF NA 80 19090 1.2 26.3 94.0 14298 74.9

NA 85 12424 1.6 26.1 93.0 9727 78.3

NA 90 8296 2.3 25.9 86.6 6860 82.7

NA 95 7214 2.6 25.7 83.0 5980 82.9

NA 100 7076 2.7 25.7 81.9 5866 82.9

TABLE IV

ASSOCIATION RULES EXTRACTED USING MAXCONF ON THE Hughes et al. [19] DATASET

# Association Rule Supp. (%) Conf. (%)

1 FMP17 ⇒ ERG28, ERG25 0.60 100

2 CTF13 ⇒ SNO1, SNZ1 21.0 80.8

3 CSE1 ⇒ CRM1, PCL5 0.33 100

4 EUG1 ⇒ BNA2, GCS2, PDH1, TFS1, THI5, THI11, THI13, YGR043c, YML131w 1.30 100

5 SIL1 ⇒ AFR1, GCS2, YPS1, YOR289w 2.67 100

6 FRE6 ⇒ SIT1, ARN1, ARN2, ENB1, FIT2, FIT3 4.33 100

7 AKR1 ⇒ CCC2, SIT1, FTR1, ARN1, ARN2, FET3, ENB1, FIT2, FIT3 3.33 90

8 MAC1 ⇒ FRE7 0.33 100

9 MEP2 ⇒ GLK1, GLC3, DMC1, HSP12, PRY1, NCA3, TFS1, MSC1, PGM2, YGP1 1.00 100

10 ESC8 ⇒ IMD1, IMD2 1.30 100

2 is expected as more relationships within the rules are considered. The high recall (94%)

obtained by MAXCONF is superior compared with using RERII (1.5%) with minconf = 80%

(and minsup = 1% for RERII). This extremely low recall for RERII is a significant weakness of

support-based pruning, and highlights the importance of mining high confidence rules in dense

perturbation microarrays. Many of the DIs were not detected by RERII as 96.5% of the genes

were immediately pruned based on support during preprocessing.
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Rules 1, 2 and 3 in Table IV are example rules displaying DIs. Both rules 1 and 3 would not

be identified unless the support threshold for RERII was decreased significantly (if possible). In

rule 1, ERG28 binds ERG25, however there is no known link between these genes and FMP17. Rule

2 with its high support, is the most common rule published to validate previous approaches, as

in [3], due to the well documented DI between SNO1 and SNZ1. Inspection of the rules generated

by RERII showed that the majority of rules containing a DI contained the genes SNO1 and SNZ1.

Rule 3, with 100% confidence and 0.33% support, correctly describes the relationships between

all three genes (CSE1 binds PCL5, which in turn PCL5 is able to bind CRM1).

Although we achieved high recall with respect to DIs, only a slight improvement in precision

was achieved. However, this does not reflect the inappropriateness of mining high confidence

rules. A set of genes can be highly related without interacting, and therefore will not be mentioned

in the BIND database. Furthermore, not all gene relationships we identify can convey DIs. For

examples, rules 8 and 10 in Table IV only include down-regulated genes, which are not expressed,

and thus a DI between these genes cannot occur. However we cannot yet confirm based on

this evaluation that these gene sets are not related, and are thus false positives. Therefore,

we hypothesise that our low precision is an indication that we are identifying other possible

relationships which are not documented DIs. This forms the basis of our next evaluation scheme

using the Gene Ontology, to investigate how biologically relevant our rules are with respect to

other gene relationships.

2) Gene Ontology: In this section we evaluate the rules based on the the Gene Ontology (GO).

The GO [8] is an international standard to annotate genes in three distinct categories: molecular

function, biological process and cellular component. The GO has a hierarchical structure starting

with top level ontologies to specific descriptions with increasing depth. If a rule describes

biologically meaningful relationships between its genes, we would expect the genes to share

common GO annotations. Based on this, we evaluated the rules we identify using GOstat [21], a

web-based query engine wrapper of the GO database. GOstat determines for a group of genes,

GO annotations that are statistically over-represented within the group. To take full advantage of

this query engine we developed an automated process using Python and CGI scripts to scrape the

HTML results produced by GOstat for each individual rule. Rules which contained an antecedent

gene that shared a GO annotation with any genes in the consequent items were said to contain a

biologically meaningful relationship. We chose a minimum depth of 4 within the GO hierarchy
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to ensure the GO annotations between the items represented more specific gene relationships.

These results are summarised in the last two columns of Table III. The first of these columns

shows the number of rules identified by each system which contain a GO relationship. The

second column is the percentage of rules. We chose to show both these values to highlight the

difference between RERII and MAXCONF.

The rules generated by MAXCONF are more biologically meaningful than the rules identified

by RERII with 80% confidence. Although a high percentage of rules mined by RERII, with

minsup = 7.5, contained a GO relationship (81.4%), the raw number of rules was significantly

less than those mined by MAXCONF. Furthermore, as minconf was increased for MAXCONF

the rules mined were more biologically significant. These results strengthen our argument that

support pruning is not always ideal for identifying relationships from perturbation microarrays.

Table V shows the GO annotation break down of three example rules (rules 4, 9 and 10) from

Table IV. This table is read as follows: rule 9 is separated into three related gene groups; for

example, the genes DMC1 and MSC1 are both assigned to the ontology term meotic recombination.

This GO term has a depth of 9 within the GO, and the genes DMC1 and MSC1 are statistically

over-represented in this group with a p-value of 0.0475.

Rule 10 is a perfect example of a biologically significant rule. It cannot express a DI from

BIND, due to its items corresponding to down-regulated genes, however the two items share a

common GO term. Of interest is the gene IMD1, which is not linked to either of the other genes.

Furthermore, this gene has not yet been assigned a GO term. Therefore, we consider this rule a

potential candidate for presenting new information to biologists, where in turn they may be able

to use this rule to hypothesise possible reasons for its association with the other genes.

Rules like these, containing GO but no BIND relationships, also confirm the notion that

not all gene relationships are DIs, and hence rules not depicting DIs can still be biologically

interesting. Therefore, our intuition regarding the low precision for DIs is correct. Additionally,

rules containing gene sets that are not related with respect to the GO can also be considered

interesting. This is because, a main goal for generating perturbation microarray data is to identify

unknown gene relationships, which can then be further analysed in other experiments. Thus,

MAXCONF may be effectively used as a discovery tool for formulating new hypotheses from

microarray experiments.
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TABLE V

SAMPLE RULES WITH GO INFORMATION

Rule # Gene Ontology Cluster Information

Gene set GO term Depth P-value

4 1 THI5, BNA2, THI13, THI11 water soluble vitamin biosynthesis 7 8.93e-06

2 BNA2, GSC2, THI5, THI13, THI11 cellular biosynthesis 5 0.067

3 THI5, EUG1, BNA2, TFS1, GSC2, THI13,

THI11, PDH1

cellular metabolism 4 0.2

9 1 DMC1, MSC1 meotic recombination 9 0.0475

2 GLK1, GLC3, PGM2 carbohydrate metabolism 5 0.0475

4 HSP12, MEP2 plasma membrane 4 0.172

10 1 ESC8, IMD2 nuclear acid metabolism 5 0.02

2 IMD1 unknown – –

3) Iron Uptake Pathway: In this section we further demonstrate the usefulness of MAXCONF

for extracting correct gene relationships by examining the S.cerevisiae iron uptake systems.

S.cerevisiae has two different mechanisms to obtain iron from the external environment, which

combined form the iron uptake pathway [22], [23]. One system of the iron uptake pathway

depends on a family of high-affinity transporter proteins encoded by the genes ARN1, ARN2,

SIT1 and ENB1. Therefore, for this system to function these genes need to be co-expressed.

Another sub-system requires some, if not all, of the proteins FRE1-7, FET3, FIT2-3 and FTR1 [23].

MAXCONF was able to detect similar significant biological patterns, three of which are shown in

Table IV (rules 6, 7 and 8). In particular, rule 8 indicates the strength of MAXCONF for analysing

perturbation microarray experiments. This rule exhibits extremely low support and thus it would

have been impossible for it to be mined using a support-based approach (unless minsup was

set to a very low value). Furthermore, although this rule cannot exhibit a direct interaction, it

is of biological significance. The gene MAC1 was selectively mutated in the Hughes et al. [19]

dataset, and this rule correctly describes the relationship between the genes MAC1 and FRE7.

More specifically, MAC1 activates the expression of the gene FRE7 [24]. Therefore, FRE7 cannot

be expressed when MAC1 is not, and this rule correctly indicates this causality.

VI. CONCLUSIONS

In this paper, we introduced the first truly scalable approach for discovering gene relationships

from microarray data. Traditional data mining methods, which are optimised for sparse datasets,
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are impractical for analysing microarray data. Recently, row-enumeration rule mining algorithms

have been developed to facilitate mining in dense datasets. However, until now, all algorithms

proposed relied on the support measure to prune the search space. This is a major shortcoming as

many potentially interesting gene relationships, which have low support and high confidence, are

pruned. Our proposed rule mining algorithm, MAXCONF, effectively overcomes this, discovering

high confidence rules from dense microarray data. MAXCONF is a support-free row-enumeration

algorithm which exploits two new confidence pruning techniques, and restricts the rule discovery

to maximal confident rules.

We performed experiments on three microarray datasets evaluating the performance of MAX-

CONF in terms of the number of rules discovered and scalability. Our results demonstrate that

support-based pruning drastically reduces the number of gene relationships which can be mined.

MAXCONF, on the other hand, can extract significantly more gene relationships with high

confidence and low support from microarrays. Our performance study also shows that MAXCONF

is more scalable than support-based AR algorithms.

We evaluated the biological significance of the rules discovered by MAXCONF using the BIND

and GO resources. Our validation on the BIND database shows that with a minconf of 80%, we

are able to achieve a recall of 94% for extracting known direct interactions. This is superior

compared with using a support-based method, where with a low minsup of 1% only 1.5% of

direct interactions were discovered. Although precision was considerably lower than recall and

only increased slightly using MAXCONF, the majority of the rules discovered depicted other

known gene relationships, as highlighted in our GO evaluation. As MAXCONF outperforms

other approaches, we consider MAXCONF to be an excellent candidate for discovering gene

relationships from microarrays. Therefore, we are convinced that MAXCONF will be a significant

contribution to the biomedical and molecular biology domains.

ACKNOWLEDGEMENTS

This research was partially funded by the ARC Discovery Grant DP0559005. The authors

would like to thank James Curran and the anonymous reviewers for their useful comments.

Preliminary work reported in this paper was presented at BIOKDD 2005 [25].

November 13, 2006 DRAFT



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 26

REFERENCES

[1] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano, “Identification of genetic networks by strategic gene disruptions and

gene overexpressions under a boolean model.” Theoretical Computer Science, vol. 298, pp. 235–251, 2003.

[2] T. Akutsu, S. Miyano, and S. Kuhara, “Inferring qualitative relations in genetic networks and metabolic pathways.”

Bioinformatics, vol. 16, no. 8, pp. 727–734, 2000.

[3] C. Creighton and S. Hanash, “Mining gene expression databases for association rules.” Bioinformatics, vol. 19, no. 1, pp.

79–86, 2003.

[4] G. Cong, K.-L. Tan, A. Tung, and F. Pan, “Mining frequent closed patterns in microarray data.” in Fourth IEEE Int’l Conf.

on Data Mining (ICDM), vol. 4, pp. 363–366, 2004.

[5] T. Akutsu, S. Miyano, and S. Kuhara, “Identification of genetic networks from a small number of gene expression patterns

under the boolean network model.” in Pacific Symposium on Biocomputing, vol. 4, pp. 17–28, 1999.

[6] F. Pan, G. Cong, K. Tung, J. Yang, and M. Zaki, “CARPENTER: Finding closed patterns in long biological datasets.”, in

ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining (KDD), pp. 637–642, 2003.

[7] C Alfarano et.al., “The Biomolecular Interaction Network Database and Related Tools 2005 update.” Nucleic Acids Res,

vol. 33, pp. D418–24, 2005.

[8] The Gene Ontology Consortium, “The Gene Ontology (GO) database and informatics resource.” Nucleic Acids Res, vol. 32,

pp. D258–D261, 2004.

[9] P. Spellman, G. Sherlock, M. Zhang, V. Iyer, K.Anders, M. Eisen, P. Brown, D. Botstein, and B. Futcher, “Comprehensive

identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.” Molecular

Biology of the Cell, vol. 9, pp. 3273–3297, 1998.

[10] D. Singh et al., “Gene expression correlates of clinical prostate cancer behavior.” Cancer Cell, vol. 1, pp. 203–209, 2002.

[11] A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, M. Eisen, G. Storz, D. Botstein, and P. Brown, “Genomic expression

changes in the response of yeast cells to environmental changes.” Mol Biol Cell, vol. 11, no. 12, pp. 4241–4257, 2000.

[12] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene expression data: a survey.” IEEE Trans. Knowledge and Data

Eng., vol. 16, no. 11, pp. 1370–1386, Nov 2004.

[13] G. Cong, K.-L. Tan, A. K. Tung, and X. Xu, “Mining TOP-K covering rule groups for gene expression data.” in ACM

SIGMOD Int’l Conf. on Management of data, pp. 670–681, 2005.

[14] R. Agrawal, T. Imielinksi, and A. N. Swami, “Mining association rules between sets of items in large databases.” in ACM

SIGMOD Int’l Conf. on Management of Data, pp. 207–216, 1993.

[15] G. Cong, A. Tung, X. Xu, F. Pan, and J. Yang, “FARMER: Finding interesting rule groups in microarray datasets.” in

ACM SIGMOD Int’l Conf. on Management of Data, pp. 143–154, 2004.

[16] M. Zaki and C. Hsiao, “CHARM: An efficient algorithm for closed association rule mining.” in SIAM Int’l Conf. on Data

Mining (SDM), pp. 457–473, 2002.

[17] J. Pei, J. Han, and R. Mao, “CLOSET: An efficient algorithm for mining frequent closed itemsets.” in ACM SIGMOD

Int’l Workshop on Data Mining and Knowledge Discovery (DMKD ’00), pp. 21–30, 2000.

[18] Y. Huang, H. Xiong, S. Shekhar, and J. Pei, “Mining confident co-location rules without a support threshold.” in 18th

ACM Symposium on Applied Computing (ACM SAC), pp. 407–501, 2003.

[19] T. Hughes et al., “Functional discovery via a compendium of expression profiles.” Cell, vol. 102, pp. 109–126, 2000.

[20] S. Mnaimneh et al., “Exploration of essential gene functions via titratable promoter alleles.” Cell, vol. 118, pp. 31–44,

2004.

November 13, 2006 DRAFT



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 27

[21] T. Beissbarth and T. Speed, “GOstat: Find statistically overrepresented gene ontologies within gene groups.” Bioinformatics,

vol. 20, no. 9, pp. 1464–1465, 2004.

[22] R. Hassett, A. Romeo, and D. Kosman, “Regulation of high affinity iron uptake in the yeast Saccharomyces cerevisiae.”

J Biol Chem, vol. 273, no. 13, pp. 7628–7636, 1998.

[23] V. Haurie, H. Boucherie, and F. Sagliocco, “The Snf1 protein kinase controls the induction of genes of the iron uptake

pathway at the diauxic shift in Saccharomyces cerevisiae.” J Biol Chem, vol. 278, no. 46, pp. 45 391–6, 2003.

[24] L. Martins, L. Jensen, J. Simon, G. Keller, and D. Winge, “Metalloregulation of FRE1 and FRE2 homologs in

Saccharomyces cerevisiae.” J Biol Chem, vol. 273, no. 37, pp. 23 716–23 721, 1998.

[25] T. McIntosh and S. Chawla, “On discovery of maximal confident rules without support pruning in microarray data.” in

5th ACM SIGKDD Workshop on Data Mining in Bioinformatics (BIOKDD ’05), 2005, pp. 37–45.

Tara McIntosh received the BS degree in Bioinformatics from the University of Sydney, Australia in 2005.

In March 2006 Tara started a PhD degree at the University of Sydney in computational linguistics and

information retrieval for biomedical literature. Her research is supported by the Australian Postgraduate

Award, and Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO). Her

research interests include computational linguistics, information retrieval, data mining, machine learning

and their applications to biology.

Sanjay Chawla is an Associate Professor in the School of Information Technologies, University of Sydney,

Australia. He works and publishes in the area of data mining and spatial database management systems.

His work has appeared in premier data mining conferences including ACM SIGKDD, IEEE ICDM and

SIAM International Conference on Data Mining (SDM). His paper on “Mining for Outliers in Sequential

Databases” received the best application paper award in the SDM, 2006. He is also the research leader of

the data mining program of the Capital Markets CRC. He is a co-author on the text “Spatial Databases:

A Tour (2002)” which has recently been translated into Chinese and Russian. He serves on the program committee of IEEE

ICDM, SDM and PAKDD.

November 13, 2006 DRAFT


