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Abstract. As mobile devices proliferate and networks become more location-
aware, the corresponding growth in spatio-temporal data will demand analysis
techniques to mine patterns that take into account the semantics of such data.
Association Rule Mining (ARM) has been one of the more extensively studied
data mining techniques, but it considers discrete transactional data (supermarket
or sequential). Most attempts to apply this technique to spatial-temporal domains
maps the data to transactions, thus losing the spatio-temporal characteristics. We
provide a comprehensive definition ofspatio-temporal association rules (STARs)
that describe how objects move between regions over time. We definesupportin
the spatio-temporal domain to effectively deal with the semantics of such data.
We also introduce other patterns that are useful for mobility data;stationary re-
gionsandhigh traffic regions. The latter consists ofsources, sinksandthorough-
fares. These patterns describe important temporal characteristics of regions and
we show that they can be considered as special STARs. We provide efficient al-
gorithms to find these patterns by exploiting several pruning properties.

1 Introduction

The need for spatio-temporal data mining and analysis techniques is growing. Some
specific examples include managing cell phone networks and dealing with the data gen-
erated by RFID tags. Mining such data could detect patterns for applications as diverse
as intelligent traffic management, sensor networks, stock control and wildlife monitor-
ing. For example, consider the movement of users between cells of a mobile phone (or
similar) network. Being able to predict where users will go would make cell hand-over
decisions easier and improve bandwidth management. Also, since most people own a
mobile phone these days, the data could be used for fast and inexpensive population
movement studies. Local governments would find the ability to answer questions such
as “how much is this park being used?”, “which areas are congested?”, and “what are
the main routes that people take through the city” useful. The latter query would help
design better pedestrian and vehicle routes to take into account the main flows of people.

We therefore consider a set of regions, which may be any shapeor size, and a set
of objects moving throughout these regions. We assume that it is possible to determine
which objects are in a region, but we do not know precisely where an object is in that



region. We do not assume that objects are always somewhere inthe region set, so in the
example of a mobile phone network, turning the phone off poses no problems for our
methods. We are interested in finding regions with useful temporal characteristics (thor-
oughfares, sinks, sources, and stationary regions) and rules that predict how objects will
move through the regions (spatio-temporal association rules). A source occurs when the
number of objects leaving a region is high enough. A sink has ahigh number of objects
entering it. A thoroughfare is a region through which many objects move - that is, many
objects enter and leave. A stationary region is where many objects tend to stay over
time, while a STAR describes how an object moves between regions. Together, these
patterns describe many mobility characteristics and can beused to predict future move-
ments.

We take the approach of mining our patterns on a time window bytime window
basis. We think this is important because it allows us to see the changing nature of the
patterns over time, and allows for interactive mining - including changing the mining
parameters. Even though the patterns we consider occur in a spatial settings, they are all
temporal patterns because they describe objects movementsover time, as well as cap-
turingchangesin the way the objects move over time. To understand this, consider each
pattern setξi as capturing object movements over a ‘short’ period of time.In our algo-
rithms this is the interval pair[TIi, T Ii+1]. That is,ξi captures how the objects move
between the time intervalsTIi andTIi+1. Then, as the algorithm processes subsequent
time intervals, the patterns mined at these points will in general change, forming ase-
quenceof pattern sets< ξi, ξi+1, ... >. This change in thepatternsthat are output can
be considered longer term changes. Such changes in the patterns describe the changes
in the objects behavior over time. Another way to think aboutthis is to consider the
objects motion as a random process. If the process is stationary, we would expect the
patterns to remain the same over time. If the process is not stationary, the patterns will
change with time to reflect the change in the way the objects move.

There are a number of challenges when mining spatio-temporal data. First, dealing
with the interaction of space and time is complicated by the fact that they have differ-
ent semantics. We cannot just treat time as another spatial dimension, or vice versa.
For example, time has a natural ordering while space does not. Secondly, we also need
to deal with these spatio-temporal semantics effectively.This includes considering the
effects of area and the time-interval width not only on the the patterns we mine, but
also in the algorithms that find those patterns. Finally, handling updates efficiently in a
dynamic environment is challenging - especially when the algorithm must be applied
in real time. We adopt adata streammodel where spatial data arrives continuously as a
sequence of snapshotsS1, S2, ..., and the model that we mine must keep up with this.
The algorithms must therefore perform only a single pass in the temporal dimension.
That is, the algorithm must not revisitSi once it has started processingSi + 1 - this
means that the model must be incrementally update-able. Unless sampling techniques
are used, such algorithms cannot do better than scale linearly with time. Since pro-
cessing the spatial snapshots is expensive in general, we focus our attention there. We
deal with exact techniques in this paper, but it is possible to use probabilistic counting
techniques together with our algorithms, as demonstrated in one of our experiments.



2 Contributions

We make the following contributions:

– We give a rigorous definition of Spatio-Temporal Association Rules (STARs) that
preserve spatial and temporal semantics. We define the concepts ofspatial cover-
age, spatial support, temporal coverageandtemporal support. Because these defi-
nitions retain the semantics of spatial and temporal dimensions, it allows us to mine
data with regions of any size without skewing the results. That is, we successfully
extend association rules to the spatio-temporal domain.

– We define useful spatio-temporal regions that apply to objects moving through such
regions. These arestationary regionsandhigh traffic regions. The latter may be fur-
ther broken intosources, sinksandthoroughfares. We stress that these are temporal
properties of a spatial region set, and show that they are special types of STARs.
We also describe a technique for mining these regions efficiently by employing a
pruning property.

– We propose a novel and efficient algorithm for mining the STARs by devising a
pruning property based on the high traffic regions. This allows the algorithm to
prune as much of the search space as possible (for a given dataset) before do-
ing the computationally expensive part. If the set of regions is R, we are able
to significantly pruneR (to A ⊂ R and C ⊂ R) resulting in a running time
of O(|R|) + O(|A′ × C ′|) instead ofO(|R|2), whereA′ = A − A ∩ C and
C ′ = C − A ∩ C. Our experiments show that this is a significant saving. The-
oretically, it is also the most pruning possible without missing rules.

Our algorithms do not assume or rely on any form of index (suchas an R-tree, or
aggregated R-tree) to function or to obtain time savings. Ifsuch an index is available,
the algorithms will perform even better. Our time savings come about due to a set of
pruning properties, which are spatial in nature, based on the observation that only those
patterns that have support above a threshold are interesting to a user (in the sense that
they model the data).

The rest of the paper is organized as follows. In Section 3 we survey related work
and place our contributions in context. In Section 4 we give several related definitions of
STARs that highlight some of the differences in interpreting STARs. We then tackle the
problem of extending support to the spatio-temporal domain. In Section 5 we define hot
spots, stationary regions and high traffic regions. In Section 6 we describe our algorithm
for mining STARs. The results of our experiments on STAR mining are described in
Section 7. We conclude in Section 8 with a summary and directions for future work.
The appendix contains proofs of the theorems we exploit.

3 Related Work

There has been work on Spatial association rules (examples include [1, 2]) and temporal
association rules (examples include [3, 4]) but very littlework has addressed both spatial
and temporal dimensions. Most of the work that does can be categorised as traditional



association rule mining [5] or sequential ARMapplied to a spatio-temporal problem,
such as in [6].

The work by Tao et al. [7] is the only research found that addressed the problem
of STARs (albeit briefly) in the Spatial-Temporal domain. Asan application of their
work they show a brute force algorithm for mining specific spatio-temporal association
rules. They consider association rules of the form(ri, τ, p) ⇒ rj , with the following
interpretation: “If an object is in regionri at some timet, then with probabilityp it will
appear in regionrj by timet + τ ”. Such a rule is aggregated over allt in the following
way: if the probability of the rule occurring at any fixedt is abovep, a counter in
incremented. If the fraction of such occurrences is over another thresholdc, the rule is
considered important and output. The authors callp the appearance probability, and
c the confidence factor. They do not discuss the reasons for or the consequences of
this choice. Theconfidence factoris really the support with respect to time of the rule,
and when interpreted in the traditional sense,p is really theconfidence thresholdof the
rule. There is also no support defined. That is, the number of objects for which the rule
applies is ignored. For each time-stamp, their algorithm examines each pair of regions in
turn, and counts the number of objects that move between the regions. Their algorithm
is a brute force technique that takes time quadratic in the number of regions. They use
sketches (FM-PCSA) for speed, have a very simple STAR definition and ignore the
spatial and temporal semantics of the data (such as the area of the regions or the time
interval width).

Other interesting work that deals with spatio-temporal patterns in the spatio-temporal
domain includes [8–11, 7]. Mamoulis et al. [11] mine periodic patterns in objects mov-
ing between regions. Wang et al. [9] introduce what they callflow patterns,which
describe the changes of events over space and time. They consider events occurring
in regions, and how these events are connected with changes in neighbouring regions
as time progresses. So rather than mining a sequence of events in time, they mine a
sequence of events that occur in specific regions over time and include a neighbour-
hood Ishikawa et al. [10] describe a technique for mining object mobility patterns in
the form of markov transition probabilities from an indexedspatio temporal dataset of
moving points. In this case, the transition probabilitypij of an (order 1) markov chain
is P (rj |ri) whereri andrj are regions, which is the confidence of a spatio-temporal
association rule, although this is not mentioned by the authors. Tsoukatos et al. [8] mine
frequent sequences of non spatio-temporal values for regions.

The work we have listed above is quite different from ours. Tao et al. [7] considers
a simple spatio-temporal association rule definition, and the algorithm for finding the
rules is brute force. Patterns that can be interpreted as STARs are considered by [10,
9], but they focus on very different research problems. The algorithm of [10] will find
all transition probabilities, even if they are small. Amongst other things, our algorithm
makes use of the fact that users will not be interested in rules below a support threshold,
and uses this to prune the search space. And most importantly, none of the related work
consider the spatial semantics of the regions, such as area,nor do they consider spatial
support or similar concepts.

Dealing with the area of regions correctly is important for interpretation of the re-
sults. Many authors implicitly assume that the spatial regions can be specified to suit



the algorithm. However, this is usually not the case. Cells in a mobile phone network
are fixed, and have a wide range of sizes and geometries depending on geographic and
population factors. Data mining applications have to be developed to work with the
given region set, and we cannot ignore the influence of different sized regions. In the
case of mining mobility patterns of moving objects (including sources, sinks, station-
ary regions, thoroughfares and STARs), ignoring area will skew the results in favour of
larger regions because they will have more objects in them onaverage. By taking the
region sizes into account, we avoid skewing the results and make our STARs compara-
ble across different sized regions. Finally, although it ispossible to scale most patterns
by the area after they have been mined, this is undesirable because it it prevents pruning
of the search space. Our algorithms deal with the spatio-temporal semantics such as
area effectively throughout the mining process and prune the search space as much as
possible.

No previous work could be found, despite our efforts, that considers sources, sinks,
stationary regions and thoroughfares. We think these patterns are very important be-
cause they capturetemporalaspects of the way that objects move in space.

4 Spatio-Temporal Association Rules

Given a datasetT of spatio-temporal data, define a languageL that is able to express
properties or groupings of the data (in both time, space, andobject attributes). Given two
sentencesϕ1 ∈ L andϕ2 ∈ L that have no common terms, define a spatio-temporal as-
sociation rule asϕ1 ⇒ ϕ2. For example, the rule “late shift workers head into the cityin
the evening” can be expressed asLateShiftWorker(x)∧InRegion(OutsideCity)∧
Time(Evening) ⇒ InRegion(City) ∧ Time(Night). To evaluate whether such a
spatio-temporal rule is interesting inT , a selection predicateq(T, ϕ1 ⇒ ϕ2) maps the
rule to{true, false}. The selection predicate will in general be a combination ofsup-
port and confidence measures. For example, if the support andconfidence of a ruleR1

are above their respective thresholds, thenq(T,R1) evaluates to true.
The languageL can be arbitrarily complex. We consider the special case where

objects satisfying a query move between regions. A queryq allows the expression of
predicates on the set of non spatio-temporal attributes of the objects. We explore a
number of definitions of such STARs in this section to highlight subtleties. We deal
only with the STAR of Definition 2 outside this section, so thereader can safely focus
on this on the first reading, without missing the main ideas ofthe paper.

Definition 1. STAR (alternatives):Objects in regionri satisfyingq at timet will:
(a) appear in regionrj for the first time at timet + τ . Notation:(ri, t,@τ, q)⇒ rj .
(b) be in region rj at time t + τ . Notation:(ri, t, τ, q)⇒ rj .
(c) appear in regionrj by (at or before) time t + τ . Notation:(ri, [t, τ ], q)⇒ rj .

Note that (a) distinctly defines the time inrj at which the objects must arrive. (b) is
less rigid and allows objects that arrived earlier than timet + τ to be counted as long as
they are still presentat time t + τ . (c) counts the objects as long as they have made an
appearance inrj at any time within[t, t + τ ]. We generalise (c) in our final definition:



Definition 2. STAR: Objects appearing in regionri satisfyingq during time interval
TIs will appear in regionrj during time intervalTIe, whereTIs ∩ TIe = ∅ andTIs

is immediately before1 TIe. Notation:(ri, T Is, q)⇒ (rj , T Ie).

Note that all the definitions are equivalent whenTIs = t, TIe = t + 1 andτ = 1.
We are interested in the rules that have a high confidence and high support . We will
use the notationri ⇒ rj or ζ for a STAR when we are not concerned with its exact
definition. We will consider the problem of more rigorous support definitions that are
more appropriate in a spatio-temporal setting later.

Definition 3. Definesupport of a ruleζ, denoted byσ(ζ), to be the number of objects
that follow the rule, and the support (with respect toq) of a regionr duringTI, denoted
byσ(r, T I, q), to be the number of distinct objects withinr duringTI satisfyingq.

Definition 4. Define theconfidenceof a rule ζ whose antecedent contains regionri

during TI, denoted byc(ζ), as the conditional probability that the consequent is true
given that the antecedent is true. This is the probability that the rule holds and is analo-
gous to the traditional definition of confidence and is given by c(ζ) = σ(ζ)/σ(ri, T I).

We illustrate the above definitions with an example.

Fig. 1.Example data for spatio-temporal association rule mining. See example 1.

Example 1.Consider Figure 1 which shows the movement of the set of objects S =
{a, b, c, d, e, f, g} in the time-frame[t, t + 3] captured at the four snapshotst, t + 1, t +
2, t + 3. Assume thatq = ‘true′ so that all objects satisfy the query.

Consider the STARζ = (r1, t,@1, q) ⇒ r2. From the diagram,{b, c, e} follow
this rule, so the support of the rule isσ(ζ) = 3. Since the total number of objects that
started inr1 is 5 = σ(r1, t) = |{a, b, c, d, e}|, the confidence of the rule isc(ζ) = 3

5 .
For ζ = (r1, t,@2, q) ⇒ r2 we haveσ(ζ) = 2 because{a, d} follow the rule, and

1 That is, there does not exist a time-stampt that isbetweenthe time intervals in the sense that
(t < te∀te ∈ TIe) ∧ (t > ts∀ts ∈ TIs).



c(ζ) = 2
5 . Forζ = (r1, t,@3, q) ⇒ r2 we haveσ(ζ) = 0 because no object appears in

r2 for the first time at timet + 3.
The STARζ = (r1, t, 1, q) ⇒ r2 is equivalent toζ = (r1, t,@1, q) ⇒ r2. But

for ζ = (r1, t, 2, q) ⇒ r2 we haveσ(ζ) = 4 because{a, b, c, d} follow the rule (for
this STAR definition we count them as long as they are still there at timet + 2), and
c(ζ) = 4

5 . Forζ = (r1, t, 3, q)⇒ r2 we haveσ(ζ) = 4 since{a, b, d, e} follow the rule
(we don’t countc because it is no longer inr2 at timet + 3), andc(ζ) = 4

5 .
(r1, [t, 1], q)⇒ r2 = (r1, t, 1, q)⇒ r2 = (r1, t,@1, q)⇒ r2. Forζ = (r1, [t, 2], q)

⇒ r2 we haveσ(ζ) = 5 because{a, b, c, d, e} satisfy the rule.e satisfies even though
it has left byt + 2. Since all objects fromr1 have made an appearance inr2 by t + 2
we must haveσ((r1, [t, k], q)⇒ r2) = 5 for all k ≥ 2. Forζ = (r1, [t + 1, 1], q)⇒ r2

we haveσ(ζ) = 2 andc(ζ) = 2
2 = 1

The STARζ = r1, [t, t], q) ⇒ (r2, [t + 1, t + k] is equivalent to(r1, [t, k], q) ⇒
r2 for k ≥ 1. For the STARζ = r1, [t, t + 1], q) ⇒ (r2, [t + 2, t + 3] we have5
distinct objects ({a, b, c, d, e}) appearing inr1 during [t, t + 1] and6 distinct objects
({a, b, c, d, e, g}) appearing inr2 during [t + 2, t + 3]. The objects following the rule
are{a, b, c, d, e} so the support of the rule is5 and its confidence is55 = 1. For ζ =
r1, [t + 1, t + 2], q)⇒ (r2, [t + 3] we haveσ(ζ) = 3 andc(ζ) = 3

4 .

Counting the objects that move between regions is a simple task. The main idea is
that if S1 is the set of objects inr1 at timet andS2 is the set of objects inr2 at time
t + 1 then the number of objects moving fromr1 to r2 during that time is|S1 ∩ S2|
(assuming objects don’t appear in more than one region at a time).

4.1 Extending Support into the Spatio-Temporal Setting

Defining support in a spatio-temporal setting is more complicated than we have consid-
ered so far. Specifically, the size of any spatial atom or termin the rule should affect the
support. That is, given the support in Definition 3, two ruleswhose only difference is
the area of the region in which they apply will have identicalsupport. Consider Figure
2 wherer1 ⊂ R1, and objects{a, b, c, d}move fromr1 to r2 between timet andt + 1.
Then the rulesr1 ⇒ r2 andR1 ⇒ r2 have the same support2. However, among these
sets of equivalent rules we would prefer the rule covering the smallest area because it is
more precise. A similar issue arises when we wish to compare the support of rules that
cover different sized regions. Consider again Figure 2. Thesupport ofr1 ⇒ r2 is 4 and
σ(r3 ⇒ r4) = 2 while σ(R1 ⇒ R2) = 6 which is higher than the other rules but only
because it has a greater coverage. This leads to the conclusion that support should be
defined in terms of the coverage of a rule.

Definition 5. Thespatial coverageof a spatio-temporal association ruleζ, denoted by
φs(ζ), is the sum of the area referenced in the antecedent and consequent of that rule.
Trivially, the spatial coverage of a regionri is defined asφs(ri) = area(ri).

For example, the coverage of the ruler1 ⇒ r2 is area(r1) + area(r2). This remains
true even ifr1 = r2 so that STARs with this property are not artificially advantaged

2 Since{a, b, c, d} follow the rules, the support is 4 in both cases.



Fig. 2.Example data showing objects moving from timet to t + 1.

over the others. We solve the problem of different sized regions by scaling the support
σ(ζ) of a rule by the area that it covers, to givespatial support.

Definition 6. The spatial support, denoted byσs(ζ), is the spatial coverage scaled
support of the rule. That is,σs(ζ) = σ(ζ)/φs(ζ). The spatial support of a regionri

duringTI and with respect toq is σs(ri, T I, q) = σ(ri,TI,q)/φs(ri).

Consider again Figure 2 and assume theri have unit area and theRi are completely
composed of theri they cover. Then we haveσs(r1 ⇒ r2) = σ(r1 ⇒ r2)/φs(r1

⇒ r2) = 4/2 = 2, σs(r3 ⇒ r4) = 2/2 = 1 and σs(R1 ⇒ R2) = σ(R1 ⇒
R2)/φs(R1 ⇒ R2) = 6/4 = 3

2 . The ruleR1 ⇒ R2 no longer has an advantage, and
in-fact its spatial support is the weighted average of its two composing rules.

We do not need to scale confidence because it does not suffer from these problems.
Indeed, increasing the size of the regions in a rule will on average increase bothσ(ζ)
andσ(ri, T Is), so larger regions are not advantaged. Confidence is also a (conditional)
probability, so scaling it by spatial coverage would removethis property.

In some applications it is desirable to find rules that are prevalent throughout the
temporal axis of the dataset, rather than knowing exactly when the rule applied. For
example, we may wish to avoid sporadic rules which might not be very useful. In these
situations it will be useful to lett range over all values in the database. This is asimple
way of aggregating the rules mined by our algorithms. Because the time the rules apply
is now no longer ‘fixed’, it gives rise to the rule representations (ri,@τ, q) ⇒ rj ,
(ri, τ, q) ⇒ rj , (ri, [τ ], q) ⇒ rj and (ri, [τs], q) ⇒ (rj , [τe]) respectively. The first
three are interpreted as “objects inri satisfyingq will be in regionrj (for the first time
/ at / by) τ time units later”, while the latter is interpreted as “objects in ri during a
time interval of widthτs and satisfyingq will be in regionrj at some time during the
subsequent time interval of widthτe”.

Aggregating the rules over time like this requires us to consider temporal support.

Definition 7. Thetemporal coverageof a ruleζ, denoted byφt(ζ), is the total length
of the time intervals in the rule definition.



For example, the temporal coverage of the rule(ri, T Is, q) ⇒ (rj , T Ie) is |TEs| +
|TEe| where|TE| is an appropriate measure of the time interval width.

Definition 8. Thetemporal supportof a ruleζ, denoted byσt(ζ), is the number of time
interval pairsTI ′ = [TIs, T Ie] over which it holds.

Note that we did not perform scaling by temporal coverage. Inshort, this is because
we view the temporal coverage as being defined by the user and so each rule mined
will necessarily have the same temporal coverage. A more complicated reason presents
itself when we consider mining the actual rules. For example, assume the temporal
coverage of a ruleζ is τ . We have at least two options, either we count the temporal
support of the rule during[t, t + τ ], [t + 1, t + 1 + τ ], [t + 2, t + 2 + τ ], ... or during
[t, t + τ ], [t + τ, t + 2τ ], [t + 2τ, t + 3τ ], .... Scaling by temporal coverage would only
make sense in the second case. If we assume an open timescale (one that has no end, or
is sufficiently large that we can assume this) then the numberof opportunities to gain a
support count (that is, for the rule to hold) in the first case does not depend on the size
of τ . That is, the temporal coverage is not a factor.

Note thattemporal supportonly applies to the case where a user is interested in
which STARs re-occur over time (and hence that STARs which rarely occur are not
interesting). The reader should note that the definitions ofSTARs that we give apply
to a specific time interval and describe how objects move during that time (indeed our
algorithms look at each pair of time intervalsTI ′ only once). This is quite general in the
sense that the mined STARs can be analysed for changes over time, for periodicities, or
simply aggregated in time to find recurrent patterns.

Both temporal and spatial coverage are defined by the user (orby the application).
Spatial coverage is inherent in the size of the regions. Temporal coverage is more flex-
ible and determines the window for which rules must be valid,but this choice is the
same for all rules. When mining STARs we attempt to find rules that have aspatial
supportabove a threshold,minSpatSup andconfidenceaboveminConf . If the user
is interested in summarising STARs over time, we additionally output only those rules
with temporal supportaboveminTempSup.

5 Hot-Spots, High Traffic Areas and Stationary Regions

Definition 9. A region r is a dense region orhot spot with respect toq during TI
if density(r, T I) ≡ σs(r, T I, q) ≥ minDensity. We also definer as dense during
TI ′ = [TIi, T Ii+1] if it is dense during both bothTIi andTIi+1.

We define a regionr to have high traffic (with respect to some queryq) if the num-
ber of objects that satisfyq and are entering and/or leaving the region is above some
threshold. A stationary region is one where enough objects remain in the region. These
patterns are a special type of STAR. They are also easy to find.Consider twosuccessive
time intervalsTI1 andTI2. Then the number of objects (satisfyingq) that are inr in
TI2 that were not there inTI1 is the number of objects that enteredr betweenTI1 and
TI2. Let S1 be the set of objects (satisfyingq) that are inr duringTI1, and letS2 be
the corresponding set forTI2. We are clearly looking for|S2 − S1|, where− is the set



difference operation. Similarly, the number of objects leaving r is |S1 − S2| and the
number of objects that remain inr for bothTI1 andTI2 is |S1 ∩ S2|.

Example 2.Consider again Figure 1 duringTI ′ = [[t, t], [t + 1, t + 1]] ≡ [t, t + 1] and
assume the threshold is3. {e, b, c} enterr2 duringTI ′, sor2 is a sink and because they
came fromr1, r1 is a source. DuringTI ′ = [t + 1, t + 2], {g, b, c} remain inr2 so it
is a stationary region duringTI ′. If the threshold is2, it would also be a thoroughfare
because{a, d} enter while{e, f} leave duringTI ′. r2 is also a stationary region during
[t = 2, t + 3] because{a, b, d} stay there.

To express high traffic regions as STARs, note that if we let∗ be the the set of
regions excludingr but including a special regionrelse, then the number of objects
enteringr duringTI ′ = [TIi, T Ii+1] is just the support of(∗, T Ii, q) ⇒ (r, T Ii+1).
We needrelse to cater for the case that an object ‘just’ appears (disappears) from the
region set. We model this as the object coming from (going to)relse. This situation
would happen in the mobile phone example when a user turns his/her phone on (off).
We now formally define high traffic areas and stationary regions.

Definition 10. A regionr is ahigh traffic region with respect to queryq if the number
of objects (satisfyingq) enteringr (ne) or leavingr (nl) during TI ′ = [TIi, T Ii+1]
satisfy

α

φs(r)
≥ minTraffic : α = ne or nl

whereminTraffic is a given density threshold andφs is given by definition 5. Note
thatne ≡ σ((∗, T Ii, q)⇒ (r, T Ii+1)) andnl ≡ σ((r, T Ii, q)⇒ (∗, T Ii+1)).

Such regions can be further subdivided. Ifne/φs(r) is aboveminTraffic we call
that region asink. If nl/φs(r) is aboveminTraffic we call it asource,and if a region
is classified as both a sink and a source we call it athoroughfare.

Definition 11. If the number of objects remaining inr, denoted byns, satisfies ns

φs(r) ≡

σ((r, T Ii, q) ⇒ (r, T Ii+1))/φs(r) ≥ minTraffic then we callr a stationary re-
gion. A stationary region may or may not be a high traffic region.

Note that if we definearea(∗) = 0 then the definition of high traffic areas is a
statement about thespatial supportof special types of STARs. For stationary regions
however, we get as a consequence of Definition 5 thatns

φs(r) = 2 · σs((r, T Ii, q) ⇒

(r, T Ii+1)). We definenα/φs(r) : α ∈ {e, l, s} as thespatial supportof these patterns.
The following theorem allows us to prune the search space forfinding high traffic

regions and stationary regions.

Theorem 1. If minTraffic ≥ minDensity then:
1. The set of sources during[TIi, T Ii+1] are a subset of dense regions duringTIi

2. The set of sinks during[TIi, T Ii+1] are a subset of dense regions duringTIi+1

3. The set of stationary regions during[TIi, T Ii+1] are a subset of the regions that are
both dense duringTIi and duringTIi+1.

Proof. See the appendix.



As a consequence, ifminTraffic ≥ minDensity then the set of thoroughfares dur-
ing [TIi, T Ii+1] is a subset of the regions that are dense at timeTIi and at timeTIi+1.
These properties prune the search for high traffic regions, so we can find high traffic
regions by settingminDensity = minTraffic, mining all hot-spots and then mining
the hot-spots for high traffic areas.

6 Mining Spatio-Temporal Association Rules

In this section we exploit the high traffic area mining techniques to develop an efficient
STAR mining algorithm for the STARs of definition 2 (omittingq for simplicity).

As a motivation to why this is useful, assume a set of regionsR. Then there are
|R|2 possible rules for eachTI ′, since there are|R| starting regions and|R| finishing
regions. Using a brute force method, this would require|R|2 counts of the number of
objects in a region. Our algorithms address this quadratic time component.

Fig. 3. Illustration of the complete mining procedure.

The reader may find it useful to refer to Figure 3 while readingthe following. We
exploit the following theorem:

Theorem 2. LetsizeFactor = maxk(area(rk))+mink(area(rk))
maxk(area(rk)) .

If sizeFactor ·minSpatSup ≥ minTraffic then duringTI ′ = [TIi, T Ii+1]:
1. The set of consequent regions of STARs with spatial support aboveminSpatSup is
a subset of the set of sinks,C.
2. The set of antecedent regions of STARs with spatial support aboveminSpatSup is
a subset of the set of sources,A, and
3. The set of STARs whose consequent and antecedent are the same and have a spatial
support aboveminSpatSup correspond to a subset of stationary points, with equality
when2 ·minSpatSup = minTraffic.

Proof. See the appendix.



The steps to mine STARs of definition 2 with spatial support aboveminSpatSup
and confidence aboveminConf during the time intervalTI ′i = [TIi, T Ii+i] are as
follows:

1. SetminDensity = minSpatSup · sizeFactor and mine allhot-spotsduringTIi

and duringTIi+1 to produce the setHi andHi+1.
2. SetminTraffic = minSpatSup · sizeFactor and find the set ofhigh traffic

areasandstationary regionsfrom Hi andHi+1. Denote the set ofsourcesby A,
the set ofsinksby C, the set ofthoroughfaresby T and the set ofstationary regions
by S. Recall from Theorem 1 thatA ⊂ Hi, C ⊂ Hi+1, S ⊂ Hi ∩ Hi+1 and
T = A ∩ C ⊂ Hi ∩Hi+1.

3. By Theorem 2,A contains all candidates for the antecedent of STARs,C contains
all the candidates for consequents of STARs andS contains all the STARs where
the antecedent is the same as the consequent. Using this we evaluate the rules corre-
sponding to the elements ofA×C−S×S andS for spatial support and confidence3.
We keep all rules that pass these tests.

We then apply the above procedure for the next successive setof timestampsTI ′i+1 =
[TIi+1, T Ii+2] and so on. We therefore generate a sequence of pattern sets (hot-spots,
high traffic areas, stationary regions and STARs)< ξi, ξi+1, ξi+2, ... > over time. If
desired, we aggregate the patterns by counting the number ofintervalsTI ′ for which
each of the the patterns hold. If the total number of these (its temporal support as defined
earlier) is above the thresholdminTempSup after the procedure is complete, we output
the pattern. TheTI are given by aschedule algorithmthat splits up the timestamps into
a stream of time intervals. There are many possible choices for this algorithm, two
examples of which we have considered in section 4.1.

If regions are of different sizes, then in the worst case situation where a very large
region and a very small region exist the pruning will be leastefficient. In the limit-
ing case we obtain the choice which gives the lower boundminchoice of region geometry

sizeFactor = 1. On the other hand, the best pruning occurs when all the regions are
the same size, in which casesizeFactor = 2 and set of stationary regions corresponds
exactly to the set of STARs with the same antecedents and consequents. In this case we
set2 ·minSpatSupport = minTraffic = minDensity in the procedure above and
we don’t need to check the rules corresponding toS for support.

An optional pruning method may be applied that takes into account an objects maxi-
mum speed or other restrictions on its movement. That is, a STAR will not exist between
two regionsri andrj if they are so far apart that it is impossible to reachrj from ri

during the time intervalTI ′. Define a neighbourhood relationN(Ri, Rj) that outputs
the subsetS of Ri×Rj such thatS = {ri, rj : N(ri, rj) = 1, ri ∈ Ri, rj ∈ Rj}. Here,
Ri, Rj are sets of regions, andN(ri, rj) is 1 if and only if ri andrj are neighbours. By
‘neighbours’ we mean thatrj can be reached fromrj duringTI ′. This relation allows
restrictions such as ‘one way’ areas, inaccessible areas, and maximum speed of objects

3 Note thatS may or may not be contained inA∪C and may in fact be disjoint. This is why we
need to evaluate all ofS for STARs. Since some overlap may occur, we save repeated work by
evaluatingA × C − S × S rather thanA × C.



to be exploited for further pruning the search space. If sucha relation is available, we
now need only to evaluateN(A,C)− S × S.

The reader should note that|A × C − S × S| ≤ |R × R|, and that the amount
by which it is smaller depends on the data andminSpatSup. We effectively prune the
search spaceas much as possible given the dataset and mining parametersbefore doing
the computationally expensive part. Our experiments show that this time saving is large
in practice, even for very small spatial support thresholds.

Finally, to tie up the theory, we define the temporal support of a hot-spotas the
number ofTI ′s for which the region is dense. Consequently, the reader should note
that thehot-spots, stationary regions, high traffic areasandSTARsall have spatial and
temporal support defined for them, and apply over two successive time intervalsTI ′ =
[TIi, T Ii+1].

7 Experiments

In this section we present the results of some experiments onour STAR mining algo-
rithm. We show that our algorithm gives significant time savings and scales well. We
then use FM-PCSA sketches [12] in our algorithm, and evaluate the resulting perfor-
mance. Finally, we show how well a pattern can be mined under noisy conditions.

7.1 Efficiency and Scalability

The Datasets We used a modified4 version of the well known GSTDTOOL to gener-
ate the data for this experiment. Theodoridis et al. [13] proposed the GSTD (“Gen-
erate Spatio-Temporal Data”) algorithm for building sets of moving points or rect-
angular objects. For each objecto the GSTD algorithm generates tuples of the form
(id, t, x, y, ...) where id is a unique id,t is a time-stamp and(x, y) are the coordi-
nates of the point. Object movements are configurable by specifying the distribution
of changes in location. We generated four datasets for our experiments consisting of
10, 000 points, each moving through[0, 1)2 at timestamps0, 0.01, 0.02, ..., 1 accord-
ing to the rulesx ← x + X, y ← y + Y whereX ∼ uniform(−0.01, 0.05) and
Y ∼ uniform(−0.01, 0.1). That is, the points changed their location every0.01 time
units which can be thought of as sampling the location of continuously moving ob-
jects every0.01 time units. We use the following partitioning of timestampsto gen-
erate our intervals:TI ′ = [t, t + 1], [t + 1, t + 2], [t + 2, t + 3], .... That is, the time
intervals discussed in our algorithms become individual timestamps and each succes-
sive pair of time stamps is used for STAR mining.Toroidal adjustment was used so
objects wrap around the unit square when they reach its boundary. The initial distri-
butions wereGaussianwith mean0.5.Our four datasets differed only in the variance
of the initial distributions, withσ2 ∈ {0.05, 0.1, 0.2, 0.3} corresponding to what we
shall call ourCompact, Medium, SparseandVery Sparsedatasets. The initial distri-
butions are displayed in Figure 4. For the parameters listedabove, the objects make
about4.5 loops of the workspace during the100 timestamps in the dataset. The speed

4 The GSTD algorithm does not output data in time order.



(a) (σ2 = 0.05) (b) (σ2 = 0.1) (c) (σ2 = 0.2) (d) (σ2 = 0.3)

Fig. 4. Initial Distribution of the Four Datasets (Compact, Medium, Sparse and Very Sparse)

and the randomness of the motion has the effect of spreading the objects out rather
quickly over the workspace, so all the datasets become sparse toward the end of the
timestamps. The compact dataset is thus not as easy for our STAR mining algorithm as
it might first appear. Indeed, the datasets were chosen to thoroughly exercise our algo-
rithm. We used six region configurations inn × n grids where the number of regions
was varied(36, 81, 144, 225, 324, 441), while keeping the total area covered constant at
154 = 50625 (the output of the GSTD algorithm was scaled to this area).

Evaluating the STAR Mining Algorithm We evaluate the performance gains of the
algorithm over a brute force algorithm (the current5 approach in literature) performing
the same task on the various datasets, using different parameter settings. Recall that the
STAR mining algorithm first found dense regions, then used these to find sources, sinks,
thoroughfares and stationary regions. It then used the sources as potential antecedents
(A), the sinks as potential consequents (C) and evaluated all STARs corresponding
to a subset of the cross productA × C for spatial support and confidence. The brute
force mining algorithm simply evaluates all STARs corresponding to the cross product
R×R whereR is the set of all regions. We used a simple brute force technique to find
the dense regions. We didnot use a neighbourhood relation to further prune the search
space in these experiments. We varied the spatial support threshold:minSpatSup ∈
{0.05, 0.075, 0.1}. Due to our region configuration (which givessizeFactor = 2), and
using the results from the theory, we always haveminSpatSup · 2 = minDensity =
minTraffic. We usedminConf = 0.0 andminTempSup = 1.

The choice of avery lowspatial support threshold (minSpatSup = 0.05) was made
so that many rules were mined for all the datasets, and that a high proportion of regions
would be dense and high traffic regions according to the corresponding thresholds. For
example, for the15 by 15 region set,minSpatSup = 0.05 corresponds to a region
being dense (high traffic) if at least22.5 objects occupy it (move into it or out of it).
Since there are10, 000 objects and only152 = 225 regions, on average this means
that if the points were spread out evenly, (which is almost the case for the very sparse
dataset, and all datasets at the end of the 101 timestamps) each region would have more
than44 objects in it, more than sufficient for the support thresholds. And since objects

5 The problem of STARs is quite new. Recall that the only other work to address STARs was by
Tao et al. [7], who used a brute force technique.



will move on average more than2/3 of the way across a region during each timestamp,
there will be plenty of objects moving between regions to provide support for high
traffic regions and STARs. With the finer region configurations (18 × 18, 21 × 21)
objects almost move an entire region width each timestamp. If the algorithm performs
well on very low setting of support, then it is guaranteed to perform even better for
higher settings. The other support settings are still quitelow but are large enough to
demonstrate how big the benefits of pruning are. For the highest (σs = 0.1) in the
15 × 15 region configuration the support threshold works out to be45, barely greater
than the average number of objects per region.

Results As expected, the rules mined by our STAR mining algorithm, which is labeled
in the figures as the ‘pruning’ technique, were identical to those mined by the brute
force algorithm. The time taken to mine the rules using our algorithm was far superior
to the brute force algorithm, as can be seen in Figure 5.

(a) Compact Dataset (b) Medium Dataset

(c) Sparse Dataset (d) Very Sparse Dataset

Fig. 5.Results on the different datasets with different support settings.



Recall that the benefit of our algorithm is to prune the searchspace of STARs in
order to avoid the quadratic time explosion that occurs whenthe the antecedent and
consequent of a rule both vary over the set of all regions. In our algorithm, the quadratic
time component occurs only for a subset of the total regions.Since the size of this subset
depends on the support thresholds and the spread of the data (assuming of course that
the points are sufficiently dense, which was deliberately the case for our datasets), the
more spread out the data is, the more regions become potential sources and sinks (and
hence potential antecedents and consequents) and the more regions must be examined
for STARs. This effect is demonstrated in the results for thefour datasets used.

For the compact and medium dataset case (Figure 5(a) and (b)), the time taken by
the pruning algorithm for all support thresholds grows significantly slower than the
brute force approach. For the very sparse dataset (Figure 5(d)), the time for both algo-
rithms grow at a similar rate forminSpatSup = 0.05, but the pruning algorithm is
still significantly faster. Recall that for thislow setting of the support threshold, almost
every region becomes dense and a high traffic region. For the higher support thresholds,
the pruning algorithm is able to prune more regions and subsequently performs much
better. The other datasets fall between these two cases. Recall that the more regions are
pruned, the smaller the quadratic component of the algorithm is. In all cases it can be
seen that pruning is very beneficial and that the amount the search space can be pruned
is determined by the support thresholds. Since users will belooking for patterns with
high support, this is ideal.

7.2 Performance when using Sketches to Handle Real-Time Streaming Data

In this experiment we use FM-PCSA sketches [12] in place of the exact counting algo-
rithm used in the other experiments. Recall that in the previous section we had 10,000
objects. We used a bit vector to represent the sets in all the regions, which made it
easy and fast to calculate the set operations we require. However, this approach will no
longer be feasible if we need to deal with millions of objects- especially if it is in a
streaming environment. Infact, any exact techniques will not scale well. We therefore
evaluate the effectiveness of using sketches.

Flajolet and Martin [12] proposed a sketch and associated algorithms for finding
the approximate cardinality of a multi-set efficiently. Thebasic data structure is known
as the FM sketch, consisting ofr bits. By using a number (m) of these sketches in a
technique known as Probabilistic Counting With StochasticAveraging (PCSA), Flajolet
and Martin improve the estimate produced by the algorithm. The resulting algorithm is
known as the FM-PCSA algorithm, and its data structure (synopsis, sketch) consists
of a m by r bit array. It has the property thatE(a(S1)OR a(S2)) = E(a(S1 ∪ S2))
whereE is the function that maps a sketch to the resulting estimate anda is a function
that creates the sketch from a setS. This property allows us to use one sketch for each
region, and combine them together as desired when we need to calculate the number of
objects moving between or staying in regions. We do this by expressing set difference
and intersection in terms of set union, which the above property allows us to estimate.

Using a probabilistic counting algorithm means that the setoperations we need to
evaluate are not exact, and we will get approximate answers and results. The benefit
obtained is a faster running time and lower space requirements. Note that an assumption



of the STAR mining algorithm is that the underlying countingalgorithm is exact. We
can thus not expect the results of brute force mining and the pruning algorithm to return
the same rules if a probabilistic counting algorithm is used. This is because the prunning
properties do not apply if the estimates provided by the counting algorithm have errors.
Indeed, this is the case for our results. The reader should note that this disparity may
in-fact be useful. with pruning enabled, the results areconsistent. In contrast, if it is
disabled, then there will exist STARs where the antecedent isnot a source or where the
consequent isnot a sink - that is, there are inconsistencies. The results we present were
obtained with the pruning enabled.

We used thecompactdataset in these experiments. For all the experimentsr was
set to 10 andm was selected from the set{28, 48, 80}. The choice ofr is determined
by how high one wishes to count. The FM-PCSA algorithm requires a good, uniform
hashing function. Simple multiplicative hash functions are acceptable for small values
of m, but have poor performance for largerm due to their relatively poor statistical
properties. We used a multiplicative hash form = 28, and the SHA-1 secure hash
function form ∈ {48, 80}.

Note that we are using very little space for the sketch in eachof our experiments
– 280, 480 and 800 bits per region as opposed to the 10,000 we used previously.That
is, we are using only 2.8%, 4.8% and 8% respectively of the space required for exact
mining.

The estimator used in the FM-PCSA sketches are known to have non-linearities
when the number of objects counted is small [12], and indeed the algorithm tends to
overestimate in such circumstances because the scaling factor in the algorithm is cal-
culated from an asymptotic bound, and is thus not suitable for small estimates. We
thus vary the spatial support in order to counteract the non-linearities of the FM-PCSA
algorithm when it is applied for small cardinalities.

Results Figure 6 shows the precision and recall for the three values of m 6. As the
number of returned objects increases (in our experiment, asthe spatial support is de-
creased), we expect the recall to increase (in the limit all rules are returned and we have
a recall of 1), while precision can be expected to decrease asit becomes difficult to
return only correct rules. The results show that the precision and recall tend to increase
as we increasem (notice formm = 80 the two curves meet before the curves for other
values ofm). This is to be expected because increasingm increases the accuracy of the
estimates within the STAR mining procedure. Secondly, as spatial support increases,
precision increases at a faster rate than recall falls. Thisleads us to believe that the
overestimates caused by the false positive rates (which is aproperty of the FM-PCSA
sketch) can be ameliorated, to a certain extent, by increasing the spatial support.

6 Precisionis defined as the fraction of rules found that are correct, that is,TP

TP+FP
whereTP

is the number of true positives andFP is the number of false positives (as determined by the
exact mining algorithm).Recallis defined as the proportion of of correct rules that are found
relative to the total number of rules that in the dataset. Recall is thus given by the equation

TP

TP+FN
whereFN is the number of false negatives. It is generally not possible to maximise

both precision and recall as there is a trade-off.
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Fig. 6. Precision and Recall for the three different settings of the number of sketches,m. The
curve was obtained by varying the spatial support.

There were significant time savings obtained by using the probabilistic counting
algorithm. As percentages of the time required by the exact technique, these savings are
36.7%, 36.6% and 37.8% form = 28, 48, and80 respectively.

In summary therefore, we were able to achieve precision and recall values of 67%
using only 8% of the space and less than 38% of the time of exactmethods. Since the
size of FM-PCSA sketches scale logarithmically in the number of objects, they can be
used to handle millions of objects. By increasing their size, errors can be reduced, and
hence precision and recall will increase.

7.3 Finding Patterns in Noisy Data

Datasets In this experiment we generate a dataset with a known patternand add noise
to it. We used a10 × 10 region layout.100 objects were spread evenly (10 per region)
over one row of the grid and made to move with a constant velocity of one region
(0.1 of the unit square) per time stamp to the right, as illustrated in Figure 7(a). The
grid was toroidal, so objects leaving on one side emerge on the other. We then added
various numbersN of uniformly distributed objects to the region layout, moving with
various speeds. We usedN ∈ {1000, 2000, 3000, 4000, 5000}, and the distribution
defining the objects’ change in location wasX ∼ Y ∼ uniform(−α, α) with α ∈
{0.05, 0.1, 0.15, 0.2}. The datasets were generated in the unit square, which was scaled
up so that each (square) region had an area of100. With aminSpatSup ≤ 0.05 there-
fore, this creates the same10 STARs at each time interval. We setminSpatConf = 0.



Results We first setminSpatSup = 0.05 (and henceminTraffic = minDensity =
0.1), thus ensuring a recall of1, and examined the effect of the ‘noisy objects’ on preci-
sion. As illustrated in Figure 7(b), precision fell for all datasets as the number of objects
was increased. We also note that the way the noisy objects moved impacted on the false
positives. Objects that moved fast or slow created fewer false positive STARs. The worst
drop in precision (supported by further experiments with finer grained variation ofα)
was for objects moving withuniform(−0.1, 0.1). This meant that they moved enough
on average to move between regions, but not enough to move toofar away and thus
‘dilute’ their support.

(a) The pattern we attempt to mine.(b) Precision vs the amount of randomly mov-
ing objects (noise) for various mobility distribu-
tions. Recall is1 in all cases.

(c) VaryingminSpatSup. (d) Precision vs Recall for
uniform(−0.1, 0.1), obtained by varying
theminSpatSup.

Fig. 7. Results for mining a pattern in noisy data.

Overall, the results were quite good: for a recall of1 we achieved precision above
0.98 for all datasets with2000 or fewer noisy objects. That is, when the number of noisy
objects was twenty times the number of objects creating the target pattern (this meant



there were two times as many noisy objects in regions of the STARs than objects sup-
porting the desired pattern). For most of the datasets the performance for3000 or more
noisy objects was not very good. We therefore sacrifice our perfect recall score for some
increases in precision by increasingminSpatSup. Generally, increasingminSpatSup
will reduce recall but increase precision. We use thehardestdataset for this. That is,
with the noisy objects moving withuniform(−0.1, 0.1). Figure 7(c) shows the pre-
cision and recall for the variousminSpatSup, while Figure 7(d) shows the resulting
precision-recall curve. This curve is has excellent characteristics - it shows that by treat-
ingminSpatSup as a tuning parameter we can achieve high recall and precision, with a
relatively small trade-off at high values. Clearly, even for the5000 noisy object case we
are able to achieve precision and recall above0.85, which is an excellent result. That
is, with noisy objects50 times the number of objects supporting the desired pattern,
moving over an area10 times the area of the desired pattern, withα set to maximise the
false positive rate, we are still able to get precision and recall above0.85.

8 Conclusion

We have introduced rigorous definitions of important spatio-temporal patterns while
retaining the semantics of space and time. Most notably, we have effectively extended
association rule mining to the spatio-temporal domain. We also defined other patterns:
hot spots, stationary regions, high traffic areas, sources, sinksandthoroughfares. These
can be used to prune the search space of STARs, but are also interesting in their own
right. Finally, we presented efficient algorithms for finding these patterns in object mo-
bility datasets. These algorithms prune the search space asmuch as possible before
doing the computationally expensive part. By mining the patterns on a time interval by
time interval basis, we can not only find current patterns in streaming data, but also see
how these patterns evolve over longer periods of time. Future work will be directed at
analysing changes in the patterns over time.
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Appendix: Proofs

Proof of Theorem 1:Let n(TIi) be the number of objects inr duringTIi, let nl(TIi)
be the number of objects leavingr during TIi (compared withn(TIi−1)), and simi-
larly, let ne(TIi) be the number of objects enteringr during TIi. The set of objects
leaving a regionr during TIi+1 is a subset of the objects within that region dur-
ing TI. Sonl(TIi+1) ≤ n(TIi). Similarly, the number of objects enteringr during
TIi+1 is a subset of the number of objects inr during TIi+1, giving ne(TIi+1) ≤
n(TIi+1). For r to be classified as a source duringTI ′ = [TIi, T Ii+1] we must
havenl(TIi+1)/φs(r) ≥ minTraffic. So if minTraffic ≥ minDensity then
density(r, T Ii) = n(TIi)/φs(r) ≥ nl(TIi+1)/φs(r) ≥ minTraffic ≥minDensity
so r must be dense duringTIi. Similarly, for sinks we havedensity(r, T Ii+1) =
n(TIi+1)/φs(r) ≥ ne(TIi+1)/φs(r) ≥ minTraffic ≥ minDensity.

The set of stationary regions is the intersection of the objects that are in the region
during TIi (S1) and the set of objects that are in the region duringTIi+1 (S2). The
stationary regions are thus clearly a subset of bothS1 andS2. Thereforer can be a sta-
tionary region only ifr is dense during bothTIi andTIi+1 with respect to the threshold
minTraffic. �

Proof of Theorem 2:In the following the time intervalTI ′ = [TIi, T Ii+1] is implicit.
Consider two regionsri andrj wherei and j range over all possible values. Letnl

be the number of objects leavingri duringTI ′, let ne be the number of objects enter-
ing rj duringTI ′ and letnm be the number of objects moving fromri to rj . Clearly
nm ≤ ne andnm ≤ nl. For the ruleζ = (ri, T Ii, q) ⇒ (rj , T Ii+1) to have sup-
port of at leastminSpatSup we haveσs(ζ) = nm

area(ri)+area(rj)
≥ minSpatSup.

We then have nl

area(ri)+area(rj)
≥ σs(ζ) and ne

area(ri)+area(rj)
≥ σs(ζ) so nl

area(ri)
≥



σs(ζ) · area(ri)+area(rj)
area(ri)

and ne

area(rj)
≥ σs(ζ) · area(ri)+area(rj)

area(rj)
. Therefore by def-

inition 10 on page 10,ri is a source ifσs(ζ) · area(ri)+area(rj)
area(ri)

≥ minTraffic

andrj is a sink if σs(ζ) · area(ri)+area(rj)
area(rj)

≥ minTraffic since in those cases we

have nl

area(ri)
≥ σs(ζ) · area(ri)+area(rj)

area(ri)
≥ minTraffic and ne

area(rj)
≥ σs(ζ) ·

area(ri)+area(rj)
area(rj)

≥ minTraffic. For both the source and sink to be found we must

thus havemin
(

area(ri)+area(rj)
area(ri)

,
area(ri)+area(rj)

area(rj)

)

≥ minTraffic.

Now because we require the relationship to hold for allri andrj we must minimise

min
(

area(ri)+area(rj)
area(ri)

,
area(ri)+area(rj)

area(rj)

)

so that the bound is strict.

Sincearea(ri)+area(rj)
area(ri)

is minimised for the choice of regionsri = maxk(area(rk))

andrj = mink(area(rk)), the value we require issizeFactor.
The last case is a consequence of the definition of the spatialsupport - that is, even

if the antecedent and consequent are the same they are both still counted in the scaling
factor. In this case we haveri = rj . Letns be the number of objects remaining in region
r = ri = rj . By the definition of spatial support we haveσs(ζ) = ns

2·area(r) and forζ
to have sufficient spatial support we requireσs(ζ) = ns

2·area(r) ≥ minSpatSup. Now
r is a stationary region if ns

area(r) ≥ minTraffic so all rulesζ whereri = rj will be
found if 2 ·minSpatSup ≥ minTraffic, with the set of such STARs being exactly
equal to the set of stationary points if2 ·minSpatSup = minTraffic. The theorem
follows by noting thatmaxchoice of region geometry sizeFactor = 2. �


