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Abstract. As mobile devices proliferate and networks become more location-
aware, the corresponding growth in spatio-temporal data will demaaly<sis
techniques to mine patterns that take into account the semantics of such data
Association Rule Mining (ARM) has been one of the more extensively sdudie
data mining techniques, but it considers discrete transactional datxfsanixet

or sequential). Most attempts to apply this technique to spatial-temporaia®ma
maps the data to transactions, thus losing the spatio-temporal charactevif&tic
provide a comprehensive definitiongfatio-temporal association rules (STARS)
that describe how objects move between regions over time. We deffiportin

the spatio-temporal domain to effectively deal with the semantics of satzh d
We also introduce other patterns that are useful for mobility dagdionary re-
gionsandhigh traffic regions The latter consists afourcessinksandthorough-
fares These patterns describe important temporal characteristics of segimh

we show that they can be considered as special STARs. We providiersffal-
gorithms to find these patterns by exploiting several pruning properties.

1 Introduction

The need for spatio-temporal data mining and analysis tqubs is growing. Some
specific examples include managing cell phone networks aatirg) with the data gen-
erated by RFID tags. Mining such data could detect pattennagdplications as diverse
as intelligent traffic management, sensor networks, stookrol and wildlife monitor-
ing. For example, consider the movement of users betweé&nhafed mobile phone (or
similar) network. Being able to predict where users will gould make cell hand-over
decisions easier and improve bandwidth management. Alste snost people own a
mobile phone these days, the data could be used for fast amgensive population
movement studies. Local governments would find the abilitsgriswer questions such
as “how much is this park being used?”, “which areas are cstege”, and “what are
the main routes that people take through the city” usefué [Bitter query would help
design better pedestrian and vehicle routes to take intmustthe main flows of people.
We therefore consider a set of regions, which may be any shiapiee, and a set
of objects moving throughout these regions. We assumettisgpossible to determine
which objects are in a region, but we do not know preciselyratam object is in that



region. We do not assume that objects are always somewhtre iagion set, so in the
example of a mobile phone network, turning the phone off pageproblems for our
methods. We are interested in finding regions with usefuptanal characteristics (thor-
oughfares, sinks, sources, and stationary regions) aes tht predict how objects will
move through the regions (spatio-temporal associati@sjuA source occurs when the
number of objects leaving a region is high enough. A sink haiglanumber of objects
entering it. A thoroughfare is a region through which manjeots move - that is, many
objects enter and leave. A stationary region is where maigctibtend to stay over
time, while a STAR describes how an object moves betweemmsgiTogether, these
patterns describe many mobility characteristics and carsbd to predict future move-
ments.

We take the approach of mining our patterns on a time windowirbg window
basis. We think this is important because it allows us to Beehanging nature of the
patterns over time, and allows for interactive mining - irdihg changing the mining
parameters. Even though the patterns we consider occupatialsettings, they are all
temporal patterns because they describe objects movemeantsime as well as cap-
turing changesn the way the objects move over time. To understand thissiden each
pattern set; as capturing object movements over a ‘short’ period of time&ur algo-
rithms this is the interval paifl'l;, T1;11]. That is,{; captures how the objects move
between the time intervalsi; andT'I;1. Then, as the algorithm processes subsequent
time intervals, the patterns mined at these points will inegal change, forming se-
quenceof pattern sets< &;,&;.1, ... >. This change in thpatternsthat are output can
be considered longer term changes. Such changes in thengattescribe the changes
in the objects behavior over time. Another way to think abibig is to consider the
objects motion as a random process. If the process is stagiowe would expect the
patterns to remain the same over time. If the process is atbbsary, the patterns will
change with time to reflect the change in the way the objectgemo

There are a number of challenges when mining spatio-terhgata. First, dealing
with the interaction of space and time is complicated by tw that they have differ-
ent semantics. We cannot just treat time as another spéati@ndion, or vice versa.
For example, time has a natural ordering while space doesaobndly, we also need
to deal with these spatio-temporal semantics effectivietys includes considering the
effects of area and the time-interval width not only on the platterns we mine, but
also in the algorithms that find those patterns. Finallydtiag updates efficiently in a
dynamic environment is challenging - especially when tlggdthm must be applied
in real time. We adopt data streammodel where spatial data arrives continuously as a
sequence of snapshais, S5, ..., and the model that we mine must keep up with this.
The algorithms must therefore perform only a single pasténtémporal dimension.
That is, the algorithm must not revis#; once it has started processifg+ 1 - this
means that the model must be incrementally update-ablesglampling techniques
are used, such algorithms cannot do better than scale limeéh time. Since pro-
cessing the spatial snapshots is expensive in general,aums fuur attention there. We
deal with exact techniques in this paper, but it is possiblese probabilistic counting
techniques together with our algorithms, as demonstratedé of our experiments.



2 Contributions
We make the following contributions:

— We give a rigorous definition of Spatio-Temporal AssociatiRules (STARS) that
preserve spatial and temporal semantics. We define the penckspatial cover-
age, spatial support, temporal coveragedtemporal suppottBecause these defi-
nitions retain the semantics of spatial and temporal dim@ssit allows us to mine
data with regions of any size without skewing the resultatT$, we successfully
extend association rules to the spatio-temporal domain.

— We define useful spatio-temporal regions that apply to dbj@oving through such
regions. These amgationary regiongndhigh traffic regionsThe latter may be fur-
ther broken intasources, sinkandthoroughfaresWe stress that these are temporal
properties of a spatial region set, and show that they argapggpes of STARs.
We also describe a technique for mining these regions eftlgiby employing a
pruning property.

— We propose a novel and efficient algorithm for mining the S$A) devising a
pruning property based on the high traffic regions. Thisvedléhe algorithm to
prune as much of the search space as possible (for a givesetjabeefore do-
ing the computationally expensive part. If the set of regi®mR, we are able
to significantly pruneR (to A € R andC C R) resulting in a running time
of O(|R|) + O(JA" x C'|) instead ofO(|R|?), whereA’ = A — An C and
C'" = C — AN C. Our experiments show that this is a significant saving. The-
oretically, it is also the most pruning possible without sitig rules.

Our algorithms do not assume or rely on any form of index (sastan R-tree, or
aggregated R-tree) to function or to obtain time savingsutfh an index is available,
the algorithms will perform even better. Our time savingmeoabout due to a set of
pruning properties, which are spatial in nature, based eoliservation that only those
patterns that have support above a threshold are integdstia user (in the sense that
they model the data).

The rest of the paper is organized as follows. In Section 3wweey related work
and place our contributions in context. In Section 4 we gexesal related definitions of
STARs that highlight some of the differences in interp@t8TARs. We then tackle the
problem of extending support to the spatio-temporal doniaiBection 5 we define hot
spots, stationary regions and high traffic regions. In $adiwe describe our algorithm
for mining STARs. The results of our experiments on STAR minare described in
Section 7. We conclude in Section 8 with a summary and doestfor future work.
The appendix contains proofs of the theorems we exploit.

3 Related Work

There has been work on Spatial association rules (exammksle [1, 2]) and temporal
association rules (examples include [3, 4]) but very litttek has addressed both spatial
and temporal dimensions. Most of the work that does can legjoesed as traditional



association rule mining [5] or sequential AR&ppliedto a spatio-temporal problem,
such as in [6].

The work by Tao et al. [7] is the only research found that astld the problem
of STARs (albeit briefly) in the Spatial-Temporal domain. &s application of their
work they show a brute force algorithm for mining specifictapéemporal association
rules. They consider association rules of the f¢rmr, p) = r;, with the following
interpretation: “If an object is in regior; at some time, then with probabilityp it will
appear in regiom; by timet¢ + 7”. Such a rule is aggregated over alh the following
way: if the probability of the rule occurring at any fixeéds abovep, a counter in
incremented. If the fraction of such occurrences is ovettarahreshold:, the rule is
considered important and output. The authors gahlie appearance probabilityand
¢ the confidence factorThey do not discuss the reasons for or the consequences of
this choice. Theonfidence factois really the support with respect to time of the rule,
and when interpreted in the traditional sensis really theconfidence thresholdf the
rule. There is also no support defined. That is, the numbebjetts for which the rule
applies isignored. For each time-stamp, their algorithem@res each pair of regions in
turn, and counts the number of objects that move betweerethiens. Their algorithm
is a brute force technique that takes time quadratic in tmelu of regions. They use
sketches (FM-PCSA) for speed, have a very simple STAR dieim#and ignore the
spatial and temporal semantics of the data (such as the fitlea egions or the time
interval width).

Other interesting work that deals with spatio-temporalgrat in the spatio-temporal
domain includes [8-11, 7]. Mamoulis et al. [11] mine peropatterns in objects mov-
ing between regions. Wang et al. [9] introduce what they fltall patterns,which
describe the changes of events over space and time. Theideoesents occurring
in regions, and how these events are connected with changesghbouring regions
as time progresses. So rather than mining a sequence okéduetimne, they mine a
sequence of events that occur in specific regions over tirdeérartude a neighbour-
hood Ishikawa et al. [10] describe a technique for miningeobmobility patterns in
the form of markov transition probabilities from an indexsmhtio temporal dataset of
moving points. In this case, the transition probability of an (order 1) markov chain
is P(r;|r;) wherer; andr; are regions, which is the confidence of a spatio-temporal
association rule, although this is not mentioned by the@sti'soukatos et al. [8] mine
frequent sequences of non spatio-temporal values formegio

The work we have listed above is quite different from our@ &aal. [7] considers
a simple spatio-temporal association rule definition, dedalgorithm for finding the
rules is brute force. Patterns that can be interpreted afRSBke considered by [10,
9], but they focus on very different research problems. Tigerghm of [10] will find
all transition probabilities, even if they are small. Amahgther things, our algorithm
makes use of the fact that users will not be interested irs faddow a support threshold,
and uses this to prune the search space. And most importaotlg of the related work
consider the spatial semantics of the regions, such asraredp they consider spatial
support or similar concepts.

Dealing with the area of regions correctly is important falerpretation of the re-
sults. Many authors implicitly assume that the spatialaegican be specified to suit



the algorithm. However, this is usually not the case. Calla mobile phone network
are fixed, and have a wide range of sizes and geometries dagamdgeographic and
population factors. Data mining applications have to beettged to work with the
given region set, and we cannot ignore the influence of diffesized regions. In the
case of mining mobility patterns of moving objects (inchalisources, sinks, station-
ary regions, thoroughfares and STARS), ignoring area ilsthe results in favour of
larger regions because they will have more objects in theravenage. By taking the
region sizes into account, we avoid skewing the results agicerour STARs compara-
ble across different sized regions. Finally, although figssible to scale most patterns
by the area after they have been mined, this is undesirab&ibe it it prevents pruning
of the search space. Our algorithms deal with the spatigpéeah semantics such as
area effectively throughout the mining process and prueeséarch space as much as
possible.

No previous work could be found, despite our efforts, thatsiters sources, sinks,
stationary regions and thoroughfares. We think these noatt&re very important be-
cause they captutemporalaspects of the way that objects move in space

4 Spatio-Temporal Association Rules

Given a dataset’ of spatio-temporal data, define a langudgthat is able to express
properties or groupings of the data (in both time, spacephjett attributes). Given two
sentenceg; € L andp, € L that have no common terms, define a spatio-temporal as-
sociation rule ag; = ¢o. For example, the rule “late shift workers head into the itity
the evening” can be expressedlageShi ftWorker(z) AInRegion(OutsideCity) A
Time(Evening) = InRegion(City) A Time(Night). To evaluate whether such a
spatio-temporal rule is interesting I, a selection predicatg T, 1 = 2) maps the
rule to {true, false}. The selection predicate will in general be a combinatiosugf-
port and confidence measures. For example, if the supportarfatience of a ruld?,
are above their respective thresholds, th€f, R,) evaluates to true.

The languagél can be arbitrarily complex. We consider the special caserevhe
objects satisfying a query move between regions. A qgesifows the expression of
predicates on the set of non spatio-temporal attributeh@fobjects. We explore a
number of definitions of such STARs in this section to highiigubtleties. We deal
only with the STAR of Definition 2 outside this section, so teader can safely focus
on this on the first reading, without missing the main ideathefpaper.

Definition 1. STAR (alternatives)Objects in regionr; satisfyingg at timet will:

(a) appearin regionr; for the first time at timet + 7. Notation:(r;, t, Qr, q) = r;.
(b) be in regionr; at time ¢ 4 7. Notation:(r;, t, 7, ¢) = r;.

(c) appearin regionr; by (at or before) time t + 7. Notation:(r;, [t, 7], q) = r;.

Note that (a) distinctly defines the timestn at which the objects must arrive. (b) is
less rigid and allows objects that arrived earlier than tirter to be counted as long as
they are still preserdt time ¢ + 7. (c) counts the objects as long as they have made an
appearance in; at any time withint, ¢ + 7]. We generalise (c) in our final definition:



Definition 2. STAR: Objects appearing in region; satisfyingq during time interval
TI, will appear in regionr; during time intervall'l., whereT'I, N T1. = () andT'I,
is immediately befofeT'I... Notation: (r;, TI,, q) = (r;, T1I.).

Note that all the definitions are equivalent wHER, = ¢, TI, = ¢t + 1 andt = 1.
We are interested in the rules that have a high confidence ighdshpport . We will
use the notatiom; = r; or ¢ for a STAR when we are not concerned with its exact
definition. We will consider the problem of more rigorous pag definitions that are
more appropriate in a spatio-temporal setting later.

Definition 3. Definesupport of a rule {, denoted by (¢), to be the number of objects
that follow the rule, and the support (with respectjof a regionr during7'/, denoted
byo(r,T1,q), to be the number of distinct objects withimluring T'T satisfyingg.

Definition 4. Define theconfidenceof a rule ( whose antecedent contains region
during T'I, denoted by:(¢), as the conditional probability that the consequent is true
given that the antecedent is true. This is the probabiliat the rule holds and is analo-
gous to the traditional definition of confidence and is givgr(d) = o(¢) /o (r;, T1).

We illustrate the above definitions with an example.
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Fig. 1. Example data for spatio-temporal association rule mining. See example 1.

Example 1.Consider Figure 1 which shows the movement of the set of thjgc=
{a,b,c,d,e, f, g} inthe time-framgt, ¢t + 3] captured at the four snapshots+ 1,t +
2,t + 3. Assume thag = ‘true’ so that all objects satisfy the query.

Consider the STAR = (r1,t,@1,q) = re. From the diagram{b, ¢, e} follow
this rule, so the support of the ruled$¢) = 3. Since the total number of objects that
started inry is5 = o(r1,t) = [{a,b,c,d, e}|, the confidence of the rule ig¢) = 2.
For¢ = (r1,t,@Q2,q) = ro we haves({) = 2 because€{a,d} follow the rule, and

1 That is, there does not exist a time-statrthat isbetweerthe time intervals in the sense that
(t < teVte € TIe) A (t > tsVts € T).



c(¢) = % For(¢ = (r1,t,@3,q) = ro we haves () = 0 because no object appears in
ro for the first time at time + 3.

The STAR( = (r1,t,1,q) = ro is equivalent tol = (r1,¢,@1,¢q) = ro. But
for { = (r1,t,2,q) = ro we haveo({) = 4 becaus€a, b, ¢, d} follow the rule (for
this STAR definition we count them as long as they are stiltetat timet + 2), and
c(¢) = 3. For¢ = (r1,t,3,q) = 2 we haver({) = 4 since{a, b, d, ¢} follow the rule
(we don't countc because it is no longer i at timet + 3), andc(¢) = 2.

(ri,[t,1],9) = r2 = (r1,t,1,q) = 12 = (r1,t,Q1, q) = 9. FOr¢ = (r1,[t, 2], q)
= ro we haves({) = 5 becausda, b, ¢, d, e} satisfy the rulee satisfies even though
it has left byt + 2. Since all objects fromr; have made an appearance-inby ¢ + 2
we must haver ((rq, [¢, k], q) = re) =5forallk > 2. For{ = (ry, [t + 1,1],q) = 72
we haver(¢) =2andc(¢) =2 =1

The STARC = rq, [t,t],q) = (ro, [t + 1,¢ + k] is equivalent ta(ry, [t, k], q) =
ro for & > 1. For the STARC = rq,[t,t + 1],q) = (r2, [t + 2,t + 3] we haveb
distinct objects {a, b, ¢, d, e}) appearing in-; during [¢,¢ + 1] and6 distinct objects
({a,b,c,d, e, g}) appearing inre during [t 4+ 2, ¢ + 3]. The objects following the rule
are{a,b,c,d, e} so the support of the rule sand its confidence i§ =1.For¢ =
1, [t 4+ 1,6 +2],q) = (r2, [t + 3] we haver(¢) = 3 andc(¢) = 3.

Counting the objects that move between regions is a simple Tdne main idea is
that if S; is the set of objects in; at timet andS; is the set of objects in, at time
t + 1 then the number of objects moving from to r during that time is.S; N Sy|
(assuming objects don't appear in more than one region ate) ti

4.1 Extending Support into the Spatio-Temporal Setting

Defining support in a spatio-temporal setting is more coogpéid than we have consid-
ered so far. Specifically, the size of any spatial atom or ierthe rule should affect the
support. That is, given the support in Definition 3, two ruldsose only difference is
the area of the region in which they apply will have identsapport. Consider Figure
2 wherer; C Ry, and objectda, b, ¢, d} move fromr to ro between time andt + 1.
Then the rules; = r, andR, = r, have the same suppértowever, among these
sets of equivalent rules we would prefer the rule coverimgstinallest area because it is
more precise. A similar issue arises when we wish to comreupport of rules that
cover different sized regions. Consider again Figure 2.Stupport ofr; = r, is4 and
o(rs = r4) = 2 while 0(Ry = R3) = 6 which is higher than the other rules but only
because it has a greater coverage. This leads to the cantlinsit support should be
defined in terms of the coverage of a rule.

Definition 5. Thespatial coverageof a spatio-temporal association ru{g denoted by
¢s(¢), is the sum of the area referenced in the antecedent and goestof that rule.
Trivially, the spatial coverage of a region is defined ag)s(r;) = area(r;).

For example, the coverage of the rule= 75 is area(r1) + area(rs). This remains
true even ifr; = ry so that STARs with this property are not artificially advayed

2 Since{a, b, ¢, d} follow the rules, the support is 4 in both cases.



Fig. 2. Example data showing objects moving from tim® ¢ + 1.

over the others. We solve the problem of different sizedamgby scaling the support
o(¢) of arule by the area that it covers, to gsatial support.

Definition 6. The spatial support, denoted by, (¢), is the spatial coverage scaled
support of the rule. That is7s(¢) = o(¢)/¢s(¢). The spatial support of a region
during T'I and with respecttq is os(r;, T1,q) = o(rir1.q4)/®s(rs)-

Consider again Figure 2 and assumerthleave unit area and the; are completely
composed of the; they cover. Then we have,(r; = r3) = o(r1 = r2)/ds(r1
= 7’2) = 4/2 = 2, 05(7"3 = 7"4) = 2/2 =1 andJS(Rl = Rg) = O'(Rl =
Rs)/¢s(R1 = Rg) = 6/4 = % The ruleR; = R5 no longer has an advantage, and
in-fact its spatial support is the weighted average of its t@mposing rules.

We do not need to scale confidence because it does not suifeitfiese problems.
Indeed, increasing the size of the regions in a rule will oerage increase both({)
ando(r;, T1), so larger regions are not advantaged. Confidence is alsmdifional)
probability, so scaling it by spatial coverage would remthis property.

In some applications it is desirable to find rules that arergdemt throughout the
temporal axis of the dataset, rather than knowing exactlgnwhe rule applied. For
example, we may wish to avoid sporadic rules which might motdry useful. In these
situations it will be useful to let range over all values in the database. Thissaaple
way of aggregating the rules mined by our algorithms. Beg#lus time the rules apply
is now no longer ‘fixed’, it gives rise to the rule represeiatas (r;, Q7,q) = r;,
(ri,7,q) = r4, (13, [7],q¢) = rj and(r;, [15],q) = (5, [Te]) respectively. The first
three are interpreted as “objectsrinsatisfyingg will be in regionr; (for the first time
[ at / by)  time units later”, while the latter is interpreted as “oltfen r; during a
time interval of widthr, and satisfying; will be in regionr; at some time during the
subsequent time interval of width”.

Aggregating the rules over time like this requires us to @ersemporal support

Definition 7. Thetemporal coveragef a rule ¢, denoted by, ({), is the total length
of the time intervals in the rule definition.



For example, the temporal coverage of the rule T'I,q) = (r;,T1.) is [TEs| +
|TE.| where|T E| is an appropriate measure of the time interval width.

Definition 8. Thetemporal supponf a rule(, denoted by (), is the number of time
interval pairsTI’ = [TI,, TI.] over which it holds.

Note that we did not perform scaling by temporal coverageshort, this is because
we view the temporal coverage as being defined by the useraedah rule mined
will necessarily have the same temporal coverage. A morgotioated reason presents
itself when we consider mining the actual rules. For examassume the temporal
coverage of a rulg is 7. We have at least two options, either we count the temporal
support of the rule during, ¢t + 7, [t + 1,t + 1 + 7], [t + 2, + 2 + 7], ... or during
[t,t + 7], [t + 7, + 27], [t + 27,t + 37], .... Scaling by temporal coverage would only
make sense in the second case. If we assume an open timeswatedt has no end, or
is sufficiently large that we can assume this) then the numbepportunities to gain a
support count (that is, for the rule to hold) in the first casesinot depend on the size
of 7. That is, the temporal coverage is not a factor.

Note thattemporal supporonly applies to the case where a user is interested in
which STARs re-occur over time (and hence that STARs whicelyaoccur are not
interesting). The reader should note that the definitionSTARSs that we give apply
to a specific time interval and describe how objects movenduttiat time (indeed our
algorithms look at each pair of time intervdld’ only once). This is quite general in the
sense that the mined STARs can be analysed for changesroeefair periodicities, or
simply aggregated in time to find recurrent patterns.

Both temporal and spatial coverage are defined by the uséy(thre application).
Spatial coverage is inherent in the size of the regions. Beatjgoverage is more flex-
ible and determines the window for which rules must be vdid, this choice is the
same for all rules. When mining STARs we attempt to find ruled Have aspatial
supportabove a thresholdninSpatSup andconfidenceboveminConf. If the user
is interested in summarising STARs over time, we additigralitput only those rules
with temporal supporaboveminT empSup.

5 Hot-Spots, High Traffic Areas and Stationary Regions

Definition 9. A regionr is a dense region ohot spot with respect tog during T'1
if density(r,TI) = o4(r,TI,q) > minDensity. We also define as dense during
TI' =[TI;,TI;14]ifitis dense during both boti'I; andT'I; .

We define a region to have high traffic (with respect to some quepyf the num-
ber of objects that satisfy and are entering and/or leaving the region is above some
threshold. A stationary region is one where enough objectain in the region. These
patterns are a special type of STAR. They are also easy tadmkider twesuccessive
time intervalsT'I; andT'I>. Then the number of objects (satisfyipythat are inr in
TI, that were not there ifi'I; is the number of objects that enteretetweer’I; and
TI,. Let S; be the set of objects (satisfying that are inr during7'l;, and letS; be
the corresponding set fa@rl,. We are clearly looking fofSy — S1|, where— is the set



difference operation. Similarly, the number of objectsvleg r is |S; — S2| and the
number of objects that remain infor bothT'I; andT'I5 is |:Sy N Sa|.

Example 2.Consider again Figure 1 duringl’ = [[t,t], [t + 1,t + 1]] = [¢t,¢ + 1] and
assume the threshold3s{e, b, ¢} enterr, duringT'I’, sors is a sink and because they
came fromry, ;1 is a source. Durin@'l’ = [t + 1,¢ + 2], {g, b, ¢} remain inry so it

is a stationary region during’. If the threshold i<, it would also be a thoroughfare
becausga, d} enter while{e, f} leave durindgl'I’. r, is also a stationary region during
[t = 2,t+ 3] becausga, b, d} stay there.

To express high traffic regions as STARSs, note that if wexlee the the set of
regions excluding: but including a special region.;,., then the number of objects
enteringr duringTI’ = [T'1;,TI;14] is just the support of«, T1;,q) = (r,TI;11).
We needr.;,. to cater for the case that an object ‘just’ appears (disagpéa@m the
region set. We model this as the object coming from (goingrtg).. This situation
would happen in the mobile phone example when a user turftsehishone on (off).
We now formally define high traffic areas and stationary negio

Definition 10. A regionr is ahigh traffic region with respect to query if the number
of objects (satisfying) enteringr (n.) or leavingr (n;) during TI' = [T1;,T1; 1]
satisfy

(bso([r) > minTraffic : a=neorn
whereminTraf fic is a given density threshold ang, is given by definition 5. Note
thatn, = o((x,T1;,q) = (r,T1;y1)) andn; = o((r, TI;, q) = (x,TI;i11)).

Such regions can be further subdividednlf/ ¢ (r) is aboveminTraf fic we call
that region asink. If n; /¢, (r) is aboveminTraf fic we call it asource,and if a region
is classified as both a sink and a source we calltiaroughfare.

Definition 11. If the number of objects remainingifndenoted by, satisfie ¢?(%) =
o((rTIL,q) = (r,TI;11))/¢s(r) > minTraf fic then we callr a stationary re-
gion. A stationary region may or may not be a high traffic region.

Note that if we definesrea(x) = 0 then the definition of high traffic areas is a
statement about th&patial supportof special types of STARs. For stationary regions
however, we get as a consequence of Definition 5 gﬂ% =2.0,((r,TI;,q) =
(r,TI;+1)). We definen, /¢ (r) : a € {e, 1, s} as thespatial supporbf these patterns.

The following theorem allows us to prune the search spacérfding high traffic
regions and stationary regions.

Theorem 1. If minTraf fic > minDensity then:

1. The set of sources durif@l;, T'I;.1] are a subset of dense regions durifig;

2. The set of sinks duringZ;, T'I; 1] are a subset of dense regions durifig; , ;

3. The set of stationary regions durififl;, T'I; 1] are a subset of the regions that are
both dense durin@’; and duringT'7; ;1.

Proof. See the appendix.



As a consequence, ifhinTraf fic > minDensity then the set of thoroughfares dur-
ing [TI;,T1;11]is a subset of the regions that are dense at filfieand at timeT'7; ; ;.
These properties prune the search for high traffic regiamsyes can find high traffic
regions by settingninDensity = minTraf fic, mining all hot-spots and then mining
the hot-spots for high traffic areas.

6 Mining Spatio-Temporal Association Rules

In this section we exploit the high traffic area mining tecfuds to develop an efficient
STAR mining algorithm for the STARs of definition 2 (omittingor simplicity).

As a motivation to why this is useful, assume a set of regiBn3hen there are
|R|? possible rules for eachI’, since there aréR| starting regions angiz| finishing
regions. Using a brute force method, this would requiR€ counts of the number of
objects in a region. Our algorithms address this quadriatie tomponent.

H;: Dense
during 7%

Heap: Dense
during Ti+;

_ T=4ANC
Thoroughfares

S CH N H)
Stationary
regions

Fig. 3. lllustration of the complete mining procedure.

The reader may find it useful to refer to Figure 3 while readtmgfollowing. We
exploit the following theorem:

Theorem 2. Let sizeFactor — maxk(arealry))+ming(area(ry))

maxyg(area(rg
If sizeFactor - minSpatSup > minTraffEc th((an)éuringTI’ =TI, TI11]:
1. The set of consequent regions of STARs with spatial sugpoveminSpatSup is
a subset of the set of sinks,
2. The set of antecedent regions of STARs with spatial stppoveminSpatSup is
a subset of the set of sources,and
3. The set of STARs whose consequent and antecedent arentheusd have a spatial
support aboveninSpatSup correspond to a subset of stationary points, with equality
when2 - minSpatSup = minTraf fic.

Proof. See the appendix.



The steps to mine STARs of definition 2 with spatial suppodvabminSpatSup
and confidence aboveinConf during the time intervall'I] = [T'I;, T1;;;] are as
follows:

1. SetminDensity = minSpatSup - sizeFactor and mine alhot-spotduringT'I;
and duringT'I; ; to produce the setl; andH; ;.

2. SetminTraf fic = minSpatSup - sizeFactor and find the set ohigh traffic
areasandstationary regiondrom H; and H; ;. Denote the set adourcesby A,
the set okinksby C, the set othoroughfaredy T" and the set oftationary regions
by S. Recall from Theorem 1 that ¢ H;,C C H;+1, S € H;N H;4; and
T:AQCCHLQHHJ

3. By Theorem 2A contains all candidates for the antecedent of STARspntains
all the candidates for consequents of STARs &ntbntains all the STARs where
the antecedent is the same as the consequent. Using thisiuatemhe rules corre-
sponding to the elements dfx C— S x S andS for spatial support and confiderice
We keep all rules that pass these tests.

We then apply the above procedure for the next successivé atestampsl'l; | =
[TI;4+1,TI;1 2] and so on. We therefore generate a sequence of pattern sesp(its,
high traffic areas, stationary regions and STARSY;,&;+1,&;+2,... > over time. If
desired, we aggregate the patterns by counting the numbeteofalsT I’ for which
each of the the patterns hold. If the total number of thesedihporal support as defined
earlier) is above the threshaldin T empSup after the procedure is complete, we output
the pattern. Th&'I are given by achedule algorithnthat splits up the timestamps into
a stream of time intervals. There are many possible choimeshfs algorithm, two
examples of which we have considered in section 4.1.

If regions are of different sizes, then in the worst caseasitm where a very large
region and a very small region exist the pruning will be legffitient. In the limit-
ing case we obtain the choice which gives the lower bauilthy,oice o f region geometry
sizeFactor = 1. On the other hand, the best pruning occurs when all the megice
the same size, in which case&e Factor = 2 and set of stationary regions corresponds
exactly to the set of STARs with the same antecedents aneéguests. In this case we
set2 - minSpatSupport = minTraf fic = minDensity in the procedure above and
we don't need to check the rules corresponding for support.

An optional pruning method may be applied that takes int@antan objects maxi-
mum speed or other restrictions on its movement. That isA&RSill not exist between
two regionsr; andr; if they are so far apart that it is impossible to reagtfrom r;
during the time interval'I’. Define a neighbourhood relatiag¥i(R;, R;) that outputs
the subsef of R; x R; suchthatS = {r;,r; : N(r;,r;) = 1,7, € R;,r; € R;}. Here,
R;, R; are sets of regions, amd(r;, ;) is 1 if and only if ; andr; are neighbours. By
‘neighbours’ we mean that; can be reached fromy; during7'I’. This relation allows
restrictions such as ‘one way’ areas, inaccessible aredsnaximum speed of objects

3 Note thatS may or may not be contained ihU C' and may in fact be disjoint. This is why we
need to evaluate all &f for STARs. Since some overlap may occur, we save repeated work by
evaluatingA x C' — S x S rather thand x C.



to be exploited for further pruning the search space. If sucdlation is available, we
now need only to evaluat¥ (A, C) — S x S.

The reader should note thet x C — S x S| < |R x RJ, and that the amount
by which it is smaller depends on the data amch.SpatSup. We effectively prune the
search spacas much as possible given the dataset and mining parantsdéose doing
the computationally expensive part. Our experiments shathis time saving is large
in practice, even for very small spatial support thresholds

Finally, to tie up the theory, we define the temporal suppbm bot-spotas the
number ofT'I’s for which the region is dense. Consequently, the readarldmmote
that thehot-spots, stationary regions, high traffic areamsd STARsall have spatial and
temporal support defined for them, and apply over two suaeetme intervals'[’ =
[T1;,TI;14].

7 Experiments

In this section we present the results of some experimentpSTAR mining algo-

rithm. We show that our algorithm gives significant time saig and scales well. We
then use FM-PCSA sketches [12] in our algorithm, and evaltla resulting perfor-
mance. Finally, we show how well a pattern can be mined undieyconditions.

7.1 Efficiency and Scalability

The Datasets We used a modifigbversion of the well known GSTDJoL to gener-
ate the data for this experiment. Theodoridis et al. [13jpsed the GSTD (“Gen-
erate Spatio-Temporal Data”) algorithm for building setsmmving points or rect-
angular objects. For each objecthe GSTD algorithm generates tuples of the form
(id,t,z,y,...) whereid is a unique id;¢ is a time-stamp andz,y) are the coordi-
nates of the point. Object movements are configurable byifgpeg the distribution

of changes in location. We generated four datasets for querérents consisting of
10,000 points, each moving througfe, 1)? at timestamp$), 0.01,0.02, ..., 1 accord-
ing to the rulest — =+ X,y «— y+ Y whereX ~ wuniform(—0.01,0.05) and

Y ~ uniform(—0.01,0.1). That is, the points changed their location eveijl time
units which can be thought of as sampling the location of inoieusly moving ob-
jects every0.01 time units. We use the following partitioning of timestantpsgen-
erate our intervalsT'l’ = [t,t + 1], [t + 1,t + 2], [t + 2,t + 3],.... That is, the time
intervals discussed in our algorithms become individuakStamps and each succes-
sive pair of time stamps is used for STAR mininproidal adjustment was used so
objects wrap around the unit square when they reach its lawyntihe initial distri-
butions wereGaussianwith mean0.5.0ur four datasets differed only in the variance
of the initial distributions, witho? € {0.05,0.1,0.2,0.3} corresponding to what we
shall call ourCompact, Medium, Sparsend Very Sparsedatasets. The initial distri-
butions are displayed in Figure 4. For the parameters lisbmve, the objects make
about4.5 loops of the workspace during tH€0 timestamps in the dataset. The speed

4 The GSTD algorithm does not output data in time order.
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Fig. 4. Initial Distribution of the Four Dataset€pmpact, Medium, Sparse and Very Sparse

and the randomness of the motion has the effect of spreabda@hjects out rather
quickly over the workspace, so all the datasets becomeespansrd the end of the
timestamps. The compact dataset is thus not as easy for &R 8ilhing algorithm as

it might first appear. Indeed, the datasets were chosen toughbly exercise our algo-
rithm. We used six region configurationssinx n grids where the number of regions
was varied 36, 81, 144, 225, 324, 441), while keeping the total area covered constant at
15% = 50625 (the output of the GSTD algorithm was scaled to this area).

Evaluating the STAR Mining Algorithm We evaluate the performance gains of the
algorithm over a brute force algorithm (the curfeapproach in literature) performing
the same task on the various datasets, using different péeasettings. Recall that the
STAR mining algorithm first found dense regions, then usedéto find sources, sinks,
thoroughfares and stationary regions. It then used theceswas potential antecedents
(A), the sinks as potential consequenty @nd evaluated all STARs corresponding
to a subset of the cross produétx C for spatial support and confidence. The brute
force mining algorithm simply evaluates all STARs corrasgiag to the cross product
R x RwhereR is the set of all regions. We used a simple brute force teckentq find
the dense regions. We diwbt use a neighbourhood relation to further prune the search
space in these experiments. We varied the spatial suppedhtbld:minSpatSup €
{0.05,0.075,0.1}. Due to our region configuration (which give&e Factor = 2), and
using the results from the theory, we always havia.SpatSup - 2 = minDensity =
minTraf fic. We usedninConf = 0.0 andminTempSup = 1.

The choice of aery lowspatial support threshold«{in.SpatSup = 0.05) was made
so that many rules were mined for all the datasets, and thghghoportion of regions
would be dense and high traffic regions according to the sparding thresholds. For
example, for thel5 by 15 region setminSpatSup = 0.05 corresponds to a region
being dense (high traffic) if at lea8®2.5 objects occupy it (move into it or out of it).
Since there ar@0,000 objects and onlyl5? = 225 regions, on average this means
that if the points were spread out evenly, (which is almostdase for the very sparse
dataset, and all datasets at the end of the 101 timestangtsjezgzion would have more
than44 objects in it, more than sufficient for the support thresholshd since objects

5 The problem of STARs is quite new. Recall that the only other work to agd3@ARs was by
Tao et al. [7], who used a brute force technique.



will move on average more thay3 of the way across a region during each timestamp,
there will be plenty of objects moving between regions tovjate support for high
traffic regions and STARs. With the finer region configurasidts x 18,21 x 21)
objects almost move an entire region width each timestahtpelalgorithm performs
well on very low setting of support, then it is guaranteed ¢éofgrm even better for
higher settings. The other support settings are still doitebut are large enough to
demonstrate how big the benefits of pruning are. For the biglhe = 0.1) in the

15 x 15 region configuration the support threshold works out tethebarely greater
than the average number of objects per region.

Results As expected, the rules mined by our STAR mining algorithmicivlis labeled
in the figures as the ‘pruning’ technique, were identicalitose mined by the brute
force algorithm. The time taken to mine the rules using ogodthm was far superior
to the brute force algorithm, as can be seen in Figure 5.
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Fig. 5. Results on the different datasets with different support settings.



Recall that the benefit of our algorithm is to prune the seapdate of STARS in
order to avoid the quadratic time explosion that occurs wihenthe antecedent and
consequent of a rule both vary over the set of all regionsutratgorithm, the quadratic
time component occurs only for a subset of the total regigimee the size of this subset
depends on the support thresholds and the spread of theadatan{ing of course that
the points are sufficiently dense, which was deliberatedyddise for our datasets), the
more spread out the data is, the more regions become pdtemtizes and sinks (and
hence potential antecedents and consequents) and the egaes must be examined
for STARSs. This effect is demonstrated in the results forfthe datasets used.

For the compact and medium dataset case (Figure 5(a) andn®)Xime taken by
the pruning algorithm for all support thresholds grows Higantly slower than the
brute force approach. For the very sparse dataset (Figdjg e time for both algo-
rithms grow at a similar rate fominSpatSup = 0.05, but the pruning algorithm is
still significantly faster. Recall that for thlew setting of the support threshold, almost
every region becomes dense and a high traffic region. Foiighehsupport thresholds,
the pruning algorithm is able to prune more regions and suesgly performs much
better. The other datasets fall between these two casesll Rext the more regions are
pruned, the smaller the quadratic component of the alguarith In all cases it can be
seen that pruning is very beneficial and that the amount tarelsespace can be pruned
is determined by the support thresholds. Since users wilbdleng for patterns with
high support, this is ideal.

7.2 Performance when using Sketches to Handle Real-Time ®aming Data

In this experiment we use FM-PCSA sketches [12] in place @ftkact counting algo-
rithm used in the other experiments. Recall that in the previsection we had 10,000
objects. We used a bit vector to represent the sets in alldg@ms, which made it
easy and fast to calculate the set operations we requireettawthis approach will no
longer be feasible if we need to deal with millions of objectspecially if it is in a
streaming environment. Infact, any exact techniques waitlstale well. We therefore
evaluate the effectiveness of using sketches.

Flajolet and Martin [12] proposed a sketch and associatgdrithms for finding
the approximate cardinality of a multi-set efficiently. Tieesic data structure is known
as the FM sketch, consisting efbits. By using a numbemg) of these sketches in a
technique known as Probabilistic Counting With Stochadtieraging (PCSA), Flajolet
and Martin improve the estimate produced by the algorithhe fesulting algorithm is
known as the FM-PCSA algorithm, and its data structure (8gisp sketch) consists
of am by r bit array. It has the property thd(a(S1) ORa(S2)) = E(a(S; U Ss))
whereF is the function that maps a sketch to the resulting estimade:as a function
that creates the sketch from a $etThis property allows us to use one sketch for each
region, and combine them together as desired when we neetttdate the number of
objects moving between or staying in regions. We do this lpressing set difference
and intersection in terms of set union, which the above ptg@dows us to estimate.

Using a probabilistic counting algorithm means that theopetrations we need to
evaluate are not exact, and we will get approximate answetsesults. The benefit
obtained is a faster running time and lower space requirtsniote that an assumption



of the STAR mining algorithm is that the underlying countimgorithm is exact. We
can thus not expect the results of brute force mining andtineipg algorithm to return
the same rules if a probabilistic counting algorithm is ugéds is because the prunning
properties do not apply if the estimates provided by the tingralgorithm have errors.
Indeed, this is the case for our results. The reader shou&lthat this disparity may
in-fact be useful. with pruning enabled, the results @asistentIn contrast, if it is
disabled, then there will exist STARs where the antecedandtia source or where the
consequent iaota sink - that is, there are inconsistencies. The results esept were
obtained with the pruning enabled.

We used theompactdataset in these experiments. For all the experimemtas
set to 10 andn was selected from the sé28, 48, 80}. The choice of- is determined
by how high one wishes to count. The FM-PCSA algorithm rezgia good, uniform
hashing function. Simple multiplicative hash functions acceptable for small values
of m, but have poor performance for larger due to their relatively poor statistical
properties. We used a multiplicative hash far = 28, and the SHA-1 secure hash
function form € {48,80}.

Note that we are using very little space for the sketch in edabur experiments
— 280, 480 and 800 bits per region as opposed to the 10,000edepusviously.That
is, we are using only 2.8%, 4.8% and 8% respectively of theepequired for exact
mining.

The estimator used in the FM-PCSA sketches are known to hamdimearities
when the number of objects counted is small [12], and indbedatgorithm tends to
overestimate in such circumstances because the scalitay fadhe algorithm is cal-
culated from an asymptotic bound, and is thus not suitablesricall estimates. We
thus vary the spatial support in order to counteract thelmaarities of the FM-PCSA
algorithm when it is applied for small cardinalities.

Results Figure 6 shows the precision and recall for the three valdies 6. As the
number of returned objects increases (in our experimerthespatial support is de-
creased), we expect the recall to increase (in the limiuddlsrare returned and we have
a recall of 1), while precision can be expected to decreasetexcomes difficult to
return only correct rules. The results show that the preciand recall tend to increase
as we increasen (notice formm = 80 the two curves meet before the curves for other
values ofm). This is to be expected because increasinigcreases the accuracy of the
estimates within the STAR mining procedure. Secondly, asigpsupport increases,
precision increases at a faster rate than recall falls. [Haids us to believe that the
overestimates caused by the false positive rates (whiclpisgerty of the FM-PCSA
sketch) can be ameliorated, to a certain extent, by inargdhe spatial support.

5 Precisionis defined as the fraction of rules found that are correct, thq{—,ﬁ% whereT P
is the number of true positives attdP is the number of false positives (as determined by the
exact mining algorithm)Recallis defined as the proportion of of correct rules that are found
relative to the total number of rules that in the dataset. Recall is thus givémebequation
Tijwv whereF' N is the number of false negatives. It is generally not possible to maximise

both precision and recall as there is a trade-off.
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Fig. 6. Precision and Recall for the three different settings of the numbereitis&s,m. The
curve was obtained by varying the spatial support.

There were significant time savings obtained by using théaisitistic counting
algorithm. As percentages of the time required by the exattrtique, these savings are
36.7%, 36.6% and 37.8% for = 28, 48, and80 respectively.

In summary therefore, we were able to achieve precision ecallrvalues of 67%
using only 8% of the space and less than 38% of the time of erattiods. Since the
size of FM-PCSA sketches scale logarithmically in the nundi@bjects, they can be
used to handle millions of objects. By increasing their séreors can be reduced, and
hence precision and recall will increase.

7.3 Finding Patterns in Noisy Data

Datasets In this experiment we generate a dataset with a known padteiradd noise
to it. We used d0 x 10 region layout.100 objects were spread evenly (10 per region)
over one row of the grid and made to move with a constant uglaxfi one region
(0.1 of the unit square) per time stamp to the right, as illusttateFigure 7(a). The
grid was toroidal, so objects leaving on one side emerge emtier. We then added
various numbersgV of uniformly distributed objects to the region layout, nogiwith
various speeds. We used < {1000, 2000, 3000, 4000, 5000}, and the distribution
defining the objects’ change in location W&AS ~ Y ~ wuniform(—a,«) with a €
{0.05,0.1,0.15,0.2}. The datasets were generated in the unit square, which akeglsc
up so that each (square) region had an ard®@fWith aminSpatSup < 0.05 there-
fore, this creates the sani@ STARs at each time interval. We setnSpatConf = 0.



Results We first setninSpatSup = 0.05 (and henceninTraf fic = minDensity =
0.1), thus ensuring a recall af and examined the effect of the ‘noisy objects’ on preci-
sion. As illustrated in Figure 7(b), precision fell for alihsets as the number of objects
was increased. We also note that the way the noisy objectedrimpacted on the false
positives. Objects that moved fast or slow created fewsefpbsitive STARS. The worst
drop in precision (supported by further experiments witlerfigrained variation ofv)
was for objects moving witlni form(—0.1,0.1). This meant that they moved enough
on average to move between regions, but not enough to moviat@way and thus
‘dilute’ their support.
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Fig. 7. Results for mining a pattern in noisy data.
Overall, the results were quite good: for a recalllofre achieved precision above

0.98 for all datasets witl2000 or fewer noisy objects. That is, when the number of noisy
objects was twenty times the number of objects creatingatget pattern (this meant



there were two times as many noisy objects in regions of thERSThan objects sup-
porting the desired pattern). For most of the datasets tHerpgance for3000 or more
noisy objects was not very good. We therefore sacrifice odeperecall score for some
increases in precision by increasimgn Spat Sup. Generally, increasingrin.SpatSup
will reduce recall but increase precision. We use lilbedestdataset for this. That is,
with the noisy objects moving withni form(—0.1,0.1). Figure 7(c) shows the pre-
cision and recall for the variousin.SpatSup, while Figure 7(d) shows the resulting
precision-recall curve. This curve is has excellent chergstics - it shows that by treat-
ing minSpatSup as a tuning parameter we can achieve high recall and pracisith a
relatively small trade-off at high values. Clearly, eventfte 5000 noisy object case we
are able to achieve precision and recall abo5, which is an excellent result. That
is, with noisy objects0 times the number of objects supporting the desired pattern,
moving over an ared) times the area of the desired pattern, withet to maximise the
false positive rate, we are still able to get precision amdli@bove).85.

8 Conclusion

We have introduced rigorous definitions of important sp&imporal patterns while
retaining the semantics of space and time. Most notably,ave kffectively extended
association rule mining to the spatio-temporal domain. e defined other patterns:
hot spots stationary regionghigh traffic areassourcessinksandthoroughfaresThese
can be used to prune the search space of STARSs, but are asestitig in their own
right. Finally, we presented efficient algorithms for finglithese patterns in object mo-
bility datasets. These algorithms prune the search spaotueb as possible before
doing the computationally expensive part. By mining thegyas on a time interval by
time interval basis, we can not only find current patterngri@asning data, but also see
how these patterns evolve over longer periods of time. Euttark will be directed at
analysing changes in the patterns over time.
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Appendix: Proofs

Proof of Theorem 1tet n(T'I;) be the number of objects induringT'I;, let ny(T'I;)
be the number of objects leavingduring T'I; (compared withn(7'1;_1)), and simi-
larly, let n.(T'I;) be the number of objects enteringduring T'I;. The set of objects
leaving a regionr during T'I;,; is a subset of the objects within that region dur-
ing T'I. Son;(T1,11) < n(TI;). Similarly, the number of objects enterimgduring
T1I;11 is a subset of the number of objectsrirduring 77,11, giving ne(T1;11) <
n(T1I;11). For r to be classified as a source durity’ = [TI;,TI;+1] we must
haven,(T1;11)/¢s(r) > minTraf fic. So if minTraf fic > minDensity then
density(r,TIL;) =n(T1L)/¢s(r) > n(TIi11)/ds(r) > minTraf fic > minDensity
so r must be dense durin@;. Similarly, for sinks we havelensity(r,TI;11) =
n(T1iv1)/ds(r) = ne(T1iv1)/ds(r) = minTraf fic > minDensity.

The set of stationary regions is the intersection of theabjthat are in the region
during T'I; (S1) and the set of objects that are in the region dufig,, (S3). The
stationary regions are thus clearly a subset of Bgthnd.S;. Thereforer can be a sta-
tionary region only ifr is dense during bott'I; and7'I; ., with respect to the threshold
minTraf fic. B

Proof of Theorem 2tn the following the time interval’l’ = [T'I;, TI;14] is implicit.
Consider two regions; andr; wherei andj range over all possible values. Let
be the number of objects leavingduringT'I’, let n. be the number of objects enter-
ing ; during 7’1" and letn,,, be the number of objects moving fromto r;. Clearly
N < ne @andn,, < n;. For the rule¢ = (r;,T1;,q) = (rj,TI;1+1) to have sup-
port of at leastminSpatSup we haveo,(() = m > minSpatSup.
We then have——%—— > ¢4(() and > 05(¢) so

. ne = RS
area(r;)+area(r;) area n)—&-area(r ) area(r;) —



Us(() . area(ri)tarea(r;) and —ne > O—S(C) . w_ Therefore by def-

area(r;) area(r;) — area(r;)
inition 10 on page 10y; is a source ifo4(¢) - %&’;“(”) > minTraf fic
area(r;)+area(r;)

andr; is a sink ifo5(¢) - area(r])
have —_ > g (¢) - arealrdtarcalry) > ppinTraf fic and —2— > g,(C) -

> minTraf fic since in those cases we

area(r;) area(r;) area(r;) —
%{:Tja(m > minTraf fic. For both the source and sink to be found we must
J
thus havemin (m'ea(m's—(ar;a(r")7 “reu(r'i)Jr(M?u(”)) > minTraf fic.

Now because we require the relationship to hold foraéindr; we must minimise
min (”e“(”)*‘"e“(”) m“(”)*m“(”)) so that the bound is strict.

area(r;) ’ area(r;)
area(r;)+area(r;)

Since arealr) is minimised for the choice of regioms = maxy, (area(ry))
andr; = ming (area(ry)), the value we require isize Factor.

The last case is a consequence of the definition of the sgafiglort - that is, even
if the antecedent and consequent are the same they are ilatbisited in the scaling
factor. In this case we have = ;. Letn, be the number of objects remaining in region
r = r; = r;. By the definition of spatial support we hawg({) = ﬁa(r) and for¢

to have sufficient spatial support we requit() = s—2— > minSpatSup. Now

2-area(r)
r is a stationary region P% > minTraf fic so all rules wherer; = r; will be
found if 2 - minSpatSup > minTraf fic, with the set of such STARs being exactly
equal to the set of stationary pointif minSpatSup = minTraf fic. The theorem

follows by noting thatnaxcneice of region geometry SizeFactor = 2. M



